CS/ECE 374: Algorithms & Models of
Computation

Bellman-Ford and Dynamic
Programming

Lecture 18

CS/ECE 374 1 April 1, 2021 1/36

Part |

No negative edges: Dijkstra

CS/ECE 374 April 1, 2021 2/36

Dijkstra’s Algorithm

Initialize for each node v, dist(s,v) = oo
Initialize X =0, dist(s,s) =0
for i =1 to |V| do
Let v be such that dist(s,v) = min,cy_x dist(s, u)| €
X =XU{v}
for each v in Adj(v) do

dist(s, u) = min(dist(s, u), dist(s, v) + £(v, u)) R

Priority Queues to maintain dist values for faster running time

@ Using heaps and standard priority queues: O((m + n) log n)
@ Best-first-search

CS/ECE 374 April 1, 2021 3/36

Dijkstra’s Algorithm using Priority Queues

Q <— makePQQO
insert(Q, (s,0))
for each node u # s do
insert(Q, (u,00))
X« 0
for i=1 to |V| do
(v, dist(s, v)) = extractMin(Q)
X =XU{v}
for each v in Adj(v) do
decreaseKey(Q, (u, min(dist(s, u), dist(s, v) + £(v, u)))) :

Priority Queue operations:
@ O(n) insert operations
@ O(n) extractMin operations
©@ O(m) decreaseKey operations

(UIUQ) CS/ECE 374 April 1, 2021 4/36

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value
@ All operations can be done in O(log n) time

CS/ECE 374 April 1, 2021 5/36

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value
@ All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n 4+ m) log n) time.

CS/ECE 374 April 1, 2021 5/36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

© extractMin, insert, delete, meld in O(log n) time

@ decreaseKey in O(1) amortized time:

CS/ECE 374 April 1, 2021 6 /36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

© extractMin, insert, delete, meld in O(log n) time

@ decreaseKey in O(1) amortized time: £ decreaseKey
operations for £ > n take together O(£) time

CS/ECE 374 April 1, 2021 6 /36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps
© extractMin, insert, delete, meld in O(log n) time

@ decreaseKey in O(1) amortized time: £ decreaseKey
operations for £ > n take together O(£) time

© Relaxed Heaps: decreaseKey in O(1) worst case time but at
the expense of meld (not necessary for Dijkstra’s algorithm)

CS/ECE 374 April 1, 2021

6/ 36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps
© extractMin, insert, delete, meld in O(log n) time

@ decreaseKey in O(1) amortized time: £ decreaseKey
operations for £ > n take together O(£) time

© Relaxed Heaps: decreaseKey in O(1) worst case time but at
the expense of meld (not necessary for Dijkstra’s algorithm)

© Dijkstra’s algorithm can be implemented in O(nlog n + m)
time.

CS/ECE 374 April 1, 2021 6 /36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

© extractMin, insert, delete, meld in O(log n) time

@ decreaseKey in O(1) amortized time: £ decreaseKey
operations for £ > n take together O(£) time

© Relaxed Heaps: decreaseKey in O(1) worst case time but at
the expense of meld (not necessary for Dijkstra’s algorithm)

© Dijkstra’s algorithm can be implemented in O(nlog n + m)
time.

@ Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps
(European Symposium on Algorithms, September 2009!)

(UIUC) CS/ECE 374 6 April 1, 2021 6/36

Key takeaways of Dijkstra

© Non-negative edges: In order to get to t, only need nodes whose
shortest distance is smaller than t.

CS/ECE 374 April 1, 2021 7/36

Key takeaways of Dijkstra

© Non-negative edges: In order to get to t, only need nodes whose
shortest distance is smaller than t.

e The intermediate set X keeps the i — 1 closest nodes

CS/ECE 374 April 1, 2021 7/36

Key takeaways of Dijkstra

© Non-negative edges: In order to get to t, only need nodes whose
shortest distance is smaller than t.

e The intermediate set X keeps the i — 1 closest nodes

o Give us an evaluation order: d’(s, u) only updated when v is
added to X, and u € Adj(v) andu € V — X

CS/ECE 374 April 1, 2021 7/36

Key takeaways of Dijkstra

© Non-negative edges: In order to get to t, only need nodes whose
shortest distance is smaller than t.

e The intermediate set X keeps the i — 1 closest nodes

o Give us an evaluation order: d’(s, u) only updated when v is
added to X, and u € Adj(v) andu € V — X

o In particular, once a node is in X, d’(s, u) no longer changes
as d’(s,u) = d(s, u), and it is never updated again

CS/ECE 374 April 1, 2021 7/36

Key takeaways of Dijkstra

© Non-negative edges: In order to get to t, only need nodes whose
shortest distance is smaller than t.

e The intermediate set X keeps the i — 1 closest nodes

o Give us an evaluation order: d’(s, u) only updated when v is
added to X, and u € Adj(v) andu € V — X

o In particular, once a node is in X, d’(s, u) no longer changes
as d’(s,u) = d(s, u), and it is never updated again

@ How to recognize the i-th closest node?

d'(s, u) = min(d’(s, u), dist(s, v) + £(v, u))

CS/ECE 374 April 1, 2021 7/36

Key takeaways of Dijkstra

© Non-negative edges: In order to get to t, only need nodes whose
shortest distance is smaller than t.

e The intermediate set X keeps the i — 1 closest nodes

o Give us an evaluation order: d’(s, u) only updated when v is
added to X, and u € Adj(v) andu € V — X

o In particular, once a node is in X, d’(s, u) no longer changes
as d’(s,u) = d(s, u), and it is never updated again

@ How to recognize the i-th closest node?
d'(s, u) = min(d’(s, u), dist(s, v) + £(v, u))
o d'(s,u) > d(s,u)

CS/ECE 374 April 1, 2021 7/36

Key takeaways of Dijkstra

© Non-negative edges: In order to get to t, only need nodes whose
shortest distance is smaller than t.

e The intermediate set X keeps the i — 1 closest nodes

o Give us an evaluation order: d’(s, u) only updated when v is
added to X, and u € Adj(v) andu € V — X

o In particular, once a node is in X, d’(s, u) no longer changes
as d’(s,u) = d(s, u), and it is never updated again

© How to recognize the i-th closest node?
d'(s,u) = min(d’(s, u), dist(s, v) + £(v, u))

o d'(s,u) > d(s,u)
o d'(s,v) = minycy_x d’(s, u) is the i-th closest node, and
d'(s,v) =d(s,v)

CS/ECE 374 April 1, 2021 7/36

Part |l

Negative Edges: Bellman-Ford

CS/ECE 374 April 1, 2021 8/36

What are the distances computed by Dijkstra's

algorithm?

The distance as computed
by Dijkstra algorithm start-

ing from s:
@ s=0,x=5y=1,
z=0.

s=0,x=1y =2,
z=02>.

Q
@ s=0,x=5y=1,
Q

z =2.
IDK.

CS/ECE 374 April 1, 2021 9/36

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

CS/ECE 374 April 1, 2021 10/ 36

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

X ={s:y]

S—Ny— 2 o‘tl(§1?>:1
LANS, %)

CS/ECE 374 April 1, 2021 10/ 36

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

CS/ECE 374 April 1, 2021 10/ 36

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

CS/ECE 374 April 1, 2021 10/ 36

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

CS/ECE 374 April 1, 2021 10/ 36

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

CS/ECE 374 April 1, 2021 10/ 36

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

CS/ECE 374 April 1, 2021 10/ 36

Dijkstra's Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

1@ Shortest path

False assumption: Dijkstra’s algorithm is based on the assumption
that if s = vy — vi — wo ... — v, is a shortest path from s to v,
then dist(s, v;) < dist(s, vjy1) for 0 < i < k. Holds true only for

non-negative edge lengths.
A (s, X) >(0+ (s, Z)

April 1, 2021 10/ 36

CS/ECE 374

Anything we can learn from Dijkstra?

d'(s, u) = min(d’(s, u), dist(s, v) + £(v, u))
o d'(s,u) > d(s, u) still true.

CS/ECE 374 April 1, 2021 11 /36

Anything we can learn from Dijkstra?

d'(s, u) = min(d’(s, u), dist(s, v) + £(v, u))
e d'(s,u) > d(s, u) still true.

fs=vy— vy = v...—> Vg is a shortest path from s to v,

eforl<i<k:s=vg— vi > v —...— vis a shortest
path from s to v;, i.e. subpath of a shortest path is still a
shortest path.

o Not true: dist(s, v;) < dist(s, viy1), the intermediate set is
no longer X; in fact, it can be anything

CS/ECE 374 April 1, 2021 11 /36

Anything we can learn from Dijkstra?

d'(s, u) = min(d’(s, u), dist(s, v) + £(v, u))
e d'(s,u) > d(s, u) still true.

fs= vy — vy = v...—> Vg is a shortest path from s to v,

eforl<i<k:s=vg— vi > v —...— vis a shortest
path from s to v;, i.e. subpath of a shortest path is still a
shortest path.

o Not true: dist(s, v;) < dist(s, viy1), the intermediate set is
no longer X; in fact, it can be anything

Solution: Update all edges |V| — 1 times!

CS/ECE 374 April 1, 2021 11 /36

Bellman-Ford Algorithm

for each v € V do
d(u) < oo
d(s) < 0

for k=1 to n—1 do
for each v € V do
for each edge (u,v) € In(v) do 2
d(v) = min{d(v), d(u) + £(u, v)}

for each v € V do
dist(s, v) < d(v)

Running time: O(mn)

CS/ECE 374 April 1, 2021 12 /36

Part ||

Bellman-Ford and DP

CS/ECE 374 April 1, 2021 13/36

Shortest Paths and Recursion

© Compute the shortest path distance from s to t recursively?

© What are the smaller sub-problems?

CS/ECE 374 April 1, 2021 14 /36

Shortest Paths and Recursion

© Compute the shortest path distance from s to t recursively?

© What are the smaller sub-problems?

L emma

Let G be a directed graph with arbitrary edge lengths. If
S= Vg — Vi = V» —> ... —> Vg IS a shortest path from s to vy
then forl < i < k:

QO s=vy—>vi = wvw—...— Vis a shortest path from s to
Vi

CS/ECE 374 April 1, 2021 14 /36

Shortest Paths and Recursion

© Compute the shortest path distance from s to t recursively?

© What are the smaller sub-problems?

L emma

Let G be a directed graph with arbitrary edge lengths. If
S= Vg — Vi = V» —> ... —> Vg IS a shortest path from s to vy
then forl < i < k:
QO s=vy—>vi = v —...— Vs a shortest path from s to
Vi

Sub-problem idea: paths of fewer hops/edges

CS/ECE 374 April 1, 2021 14 /36

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
d(v, k): shortest path length from s to v using at most k edges.

CS/ECE 374 April 1, 2021 15 /36

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
d(v, k): shortest path length from s to v using at most k edges.

Note: dist(s,v) = d(v,n —1).

CS/ECE 374 April 1, 2021 15 /36

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
d(v, k): shortest path length from s to v using at most k edges.
Note: dist(s,v) = d(v,n —1).

Recursion for d(v, k):

CS/ECE 374 April 1, 2021

15/36

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
d(v, k): shortest path length from s to v using at most k edges.
Note: dist(s,v) = d(v,n —1).

Recursion for d(v, k):

d(V k) — min {minueln(V)(d(U, k —].) - ,e(u’ V)).
) d(v, k — 1) ”
Rt mo st K—] ‘edqes

Base case: d(s,0) = 0 and d(v,0) = oo for all v # s.

CS/ECE 374 April 1, 2021

15/36

16 / 36

i
N
o
N
—
m
o
<

Bellman-Ford Algorithm

for each v € V do
d(u,0) < oo
d(s,0) < 0

for k=1 to n—1 do
for each v € V do
d(v, k) < d(v,k — 1)
for each edge (u,v) € In(v) do
d(v, k) = min{d(v, k),d(u, k — 1) + ¢(u,v)}

for each v € V do
dist(s, v) < d(v,n — 1)

CS/ECE 374 April 1, 2021 17 /36

Bellman-Ford Algorithm

for each v € V do
d(u,0) < oo
d(s,0) < 0

for k=1 to n—1 do
for each v € V do
d(v, k) < d(v,k — 1)
for each edge (u,v) € In(v) do
d(v, k) = min{d(v, k),d(u, k — 1) + ¢(u,v)}

for each v € V do
dist(s,v) < d(v,n — 1)

Running time:

CS/ECE 374 April 1, 2021 17 /36

Bellman-Ford Algorithm

for each v € V do
d(u,0) < oo
d(s,0) < 0

for k=1 to n—1 do
for each v € V do
d(v,k) < d(v,k — 1)
for each edge (u,v) € In(v) do
d(v, k) = min{d(v, k),d(u, k — 1) + ¢(u,v)}

for each v € V do
dist(s, v) < d(v,n — 1)

Running time: O(mn)

CS/ECE 374 April 1, 2021 17 /36

Bellman-Ford Algorithm

for each v € V do
d(u,0) < oo
d(s,0) < 0

for k=1 to n—1 do
for each v € V do
d(v, k) < d(v,k — 1)
for each edge (u,v) € In(v) do
d(v, k) = min{d(v, k),d(u, k — 1) + ¢(u,v)}

for each v € V do
dist(s,v) < d(v,n — 1)

Running time: O(mn) Space:

CS/ECE 374 April 1, 2021 17 /36

Bellman-Ford Algorithm

for each v € V do
d(u,0) < oo
d(s,0) < 0

for k=1 to n—1 do
for each v € V do
d(v, k) < d(v,k — 1)
for each edge (u,v) € In(v) do
d(v, k) = min{d(v, k),d(u, k — 1) + ¢(u,v)}

for each v € V do
dist(s,v) < d(v,n — 1)

Running time: O(mn) Space: O(n?)

CS/ECE 374 April 1, 2021 17 /36

Bellman-Ford Algorithm

for each v € V do
d(u,0) < oo
d(s,0) < 0

for k=1 to n—1 do
for each v € V do
d(v, k) < d(v,k — 1)
for each edge (u,v) € In(v) do
d(v, k) = min{d(v, k),d(u, k — 1) + ¢(u,v)}

for each v € V do
dist(s,v) < d(v,n — 1)

Running time: O(mn) Space: O(n?)
Space can be reduced to O(n).

CS/ECE 374 April 1, 2021 17 /36

Bellman-Ford Algorithm

for each v € V do
d(u) < oo
d(s) < 0

for k=1 to n—1 do
for each v € V do
for each edge (u,v) € In(v) do
d(v) = min{d(v), d(u) + £(u, v)}

for each v € V do
dist(s, v) < d(v)

Running time: O(mn) Space: O(n)

CS/ECE 374 April 1, 2021 18 /36

Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths of
C is negative.

CS/ECE 374 April 1, 2021

Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths of
C is negative.

CS/ECE 374 April 1, 2021

Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose
@ G has a negative length cycle C, and
@ s can reach C and C can reach t.

Question: What is the shortest distance from s to t?

CS/ECE 374 April 1, 2021 20/36

Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose
@ G has a negative length cycle C, and
@ s can reach C and C can reach t.

Question: What is the shortest distance from s to t?
— 00

CS/ECE 374 April 1, 2021 20/36

Bellman-Ford: Negative Cycle Detection

Check

if distances change in iteration n.

for each u € V do
d(u) < oo
d(s) < 0

for k=1 to n—1 do
for each v € V do
for each edge (u,v) € In(v) do
d(v) = min{d(v), d(u) + £(u, v)}
(* One more iteration to check if distances change *)
for each v € V do
for each edge (u,v) € In(v) do
if (d(v) > d(u) + £(u, v))
Output ¢ ‘Negative Cycle’’

for each v € V do
dist(s, v) < d(v)

CS/ECE 374 April 1, 2021

Negative Cycle Detection

Negative Cycle Detection

Given directed graph G with arbitrary edge lengths, does it have a
negative length cycle?

CS/ECE 374 April 1, 2021 22 /36

Negative Cycle Detection

Negative Cycle Detection

Given directed graph G with arbitrary edge lengths, does it have a
negative length cycle?

© Bellman-Ford checks whether there is a negative cycle C that is
reachable from a specific vertex s. There may negative cycles
not reachable from s.

@ Run Bellman-Ford |V/| times, once from each node u?

CS/ECE 374 April 1, 2021 22 /36

Negative Cycle Detection

© Add a new node s’ and connect it to all nodes of G with zero
length edges. Bellman-Ford from s’ will find a negative length
cycle if there is one. Exercise: why does this work?

© Negative cycle detection can be done with one Bellman-Ford
Invocation.

CS/ECE 374 April 1, 2021 23 /36

