BFS and Dijkstra’s Algorithm

Lecture 17
Part I

A Brief Review
Whatever-first-search

Given $G = (V, E)$ a directed graph and vertex $u \in V$. Let $n = |V|$.

$$\text{Explore}(G, u):$$

- array $Visited[1..n]$
- Initialize: Set $Visited[i] = \text{FALSE}$ for $1 \leq i \leq n$
- List: ToExplore, S
- Add u to ToExplore and to S, $Visited[u] = \text{TRUE}$
- Make tree T with root as u

while (ToExplore is non-empty) do

- Remove node x from ToExplore
- for each edge (x, y) in $\text{Adj}(x)$ do
 - if ($Visited[y] == \text{FALSE}$)
 - $Visited[y] = \text{TRUE}$
 - Add y to ToExplore
 - Add y to S
 - Add y to T with edge (x, y)

Output S
Properties of Basic Search

DFS and **BFS** are special case of BasicSearch.

1. Depth First Search (**DFS**): use **stack** data structure to implement the list *ToExplore*

2. Breadth First Search (**BFS**): use **queue** data structure to implementing the list *ToExplore*
DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)

\[
\text{for all } u \in V(G) \text{ do}
\]

- Mark \(u \) as unvisited

\[
T \text{ is set to } \emptyset
\]

\[
\text{time} = 0
\]

DFS(u)

\[
\text{mark } u \text{ as visited}
\]

\[
\text{pre}(u) = ++time
\]

\[
\text{for each } uv \text{ in } \text{Out}(u) \text{ do}
\]

\[
\text{if } v \text{ is not marked then}
\]

\[
\text{add edge } uv \text{ to } T
\]

\[
\text{DFS}(v)
\]

\[
\text{post}(u) = ++time
\]

Output \(T \)
An Edge in DAG

Proposition

If G is a DAG and $\text{post}(u) < \text{post}(v)$, then (u, v) is not in G. i.e., for all edges (u, v) in a DAG, $\text{post}(u) \geq \text{post}(v)$.

$u < v$
Reverse post-order is topological order

\[
\begin{align*}
\text{a} & \rightarrow \text{b} & \rightarrow \text{c} \\
\text{d} & \rightarrow \text{e} & \rightarrow \text{g} \\
\text{f} & \rightarrow \text{h} \\
\text{b} & \rightarrow \text{e} & \rightarrow \text{f} & \rightarrow \text{h}
\end{align*}
\]
Reverse post-order is topological order
Sort SCCs

The SCCs are topologically sorted by arranging them in decreasing order of their highest post number.

Graph G

Graph of SCCs G^{SCC}
A Different DFS

Graph G

Graph of SCCs G^{SCC}

1, 10 B

2, 9 E

3, 6 F

4, 5 G

16 C

11, 16 C

12, 15 D

13, 14 A

10 B, E, F

45 G

8 H

5 A, C, D
Part II

Breadth First Search
Overview

A. **BFS** is obtained from **BasicSearch** by processing edges using a data structure called a **queue**.

B. It processes the vertices in the graph in the order of their shortest distance from the vertex \(s \) (the start vertex).

As such...

1. **DFS** good for exploring graph structure
2. **BFS** good for exploring **distances**
A **queue** is a list of elements which supports the operations:

1. **enqueue**: Adds an element to the end of the list
2. **dequeue**: Removes an element from the front of the list

Elements are extracted in **first-in first-out (FIFO)** order, i.e., elements are removed in the order in which they were inserted.
Given (undirected or directed) graph $G = (V, E)$ and node $s \in V$

BFS

Mark all vertices as unvisited
Initialize search tree T to be empty
Mark vertex s as visited
set Q to be the empty queue

enq(s)

while Q is nonempty **do**

$u = \text{deq}(Q)$

for each vertex $v \in \text{Adj}(u)$

if v is not visited **then**

add edge (u, v) to T

Mark v as visited and **enq**(v)

Proposition

BFS(s) runs in $O(n + m)$ time.
BFS: An Example in Undirected Graphs

1. \([1]\)
BFS: An Example in Undirected Graphs

1. \([1]\)
2. \([2,3]\)
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]

BFS tree is the set of black edges.
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]
5. [5,7,8]

BFS tree is the set of black edges.
BFS: An Example in Undirected Graphs

1. \([1]\)
2. \([2,3]\)
3. \([3,4,5]\)
4. \([4,5,7,8]\)
5. \([5,7,8]\)
6. \([7,8,6]\)

BFS tree is the set of black edges.
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]
5. [5,7,8]
6. [7,8,6]
7. [8,6]

BFS tree is the set of black edges.
BFS: An Example in Undirected Graphs

1. \([1]\)
2. \([2, 3]\)
3. \([3, 4, 5]\)
4. \([4, 5, 7, 8]\)
5. \([5, 7, 8]\)
6. \([7, 8, 6]\)
7. \([8, 6]\)
8. \([6]\)
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]
5. [5,7,8]
6. [7,8,6]
7. [8,6]
8. [6]
9. []
BFS: An Example in Undirected Graphs

BFS tree is the set of black edges.
BFS: An Example in Directed Graphs

Definition: A directed graph (also called a digraph) is $G = (V, E)$, where V is a set of vertices or nodes and $E \subseteq V \times V$ is a set of ordered pairs of vertices called edges.
BFS with Distance

\textbf{BFS}(s)

Mark all vertices as unvisited; for each \(v \) set \(\text{dist}(v) = \infty \)

Initialize search tree \(T \) to be empty

Mark vertex \(s \) as visited and set \(\text{dist}(s) = 0 \)

Set \(Q \) to be the empty queue

\texttt{enq}(s)

While \(Q \) is nonempty do

\quad \(u = \text{deq}(Q) \)

\quad For each vertex \(v \in \text{Adj}(u) \) do

\quad \quad If \(v \) is not visited do

\quad \quad \quad Add edge \((u, v)\) to \(T \)

\quad \quad Mark \(v \) as visited, \texttt{enq}(v)

\quad \quad And set \(\text{dist}(v) = \text{dist}(u) + 1 \)
Properties of BFS: Undirected Graphs

Theorem

The following properties hold upon termination of \(\text{BFS}(s) \):

A. The search tree contains exactly the set of vertices in the connected component of \(s \).

B. If \(\text{dist}(u) < \text{dist}(v) \) then \(u \) is visited before \(v \).

C. For every vertex \(u \), \(\text{dist}(u) \) is the length of a shortest path (in terms of number of edges) from \(s \) to \(u \).

D. If \(u, v \) are in connected component of \(s \) and \(e = \{ u, v \} \) is an edge of \(G \), then \(|\text{dist}(u) - \text{dist}(v)| \leq 1 \).
Properties of BFS: Directed Graphs

Theorem

The following properties hold upon termination of $\text{BFS}(s)$:

A. The search tree contains exactly the set of vertices reachable from s

B. If $\text{dist}(u) < \text{dist}(v)$ then u is visited before v

C. For every vertex u, $\text{dist}(u)$ is the length of shortest path from s to u

D. If u is reachable from s and $e = (u, v)$ is an edge of G, then $\text{dist}(v) - \text{dist}(u) \leq 1$.

Not necessarily the case that $\text{dist}(u) - \text{dist}(v) \leq 1$.

(UIUC) CS/ECE 374 19 March 30, 2021 19 / 45
BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set $L_0 = \{s\}$

$i = 0$

while L_i is not empty do

initialize L_{i+1} to be an empty list

for each u in L_i do

for each edge $(u, v) \in \text{Adj}(u)$ do

if v is not visited

mark v as visited

add (u, v) to tree T

add v to L_{i+1}

$i = i + 1$
BFS with Layers

BFS\textsubscript{Layers}(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set $L_0 = \{s\}$

$i = 0$

while L_i is not empty do
 initialize L_{i+1} to be an empty list
 for each u in L_i do
 for each edge $(u, v) \in \text{Adj}(u)$ do
 if v is not visited
 mark v as visited
 add (u, v) to tree T
 add v to L_{i+1}

 $i = i + 1$

Running time: $O(n + m)$
BFS: An Example in Undirected Graphs

1 2 3
4 5 6

7

1
BFS: An Example in Undirected Graphs
BFS: An Example in Undirected Graphs
BFS: An Example in Undirected Graphs

![Graph Example](image-url)
BFS: An Example in Undirected Graphs
BFS: An Example in Undirected Graphs

Graph 1

Graph 2
BFS: An Example in Undirected Graphs
Part III

Shortest Paths and Dijkstra’s Algorithm
Shortest Path Problems

Input: A (undirected or directed) graph $G = (V, E)$ with edge lengths (or costs). For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

1. Given nodes s, t find shortest path from s to t.
2. Given node s find shortest path from s to all other nodes.
3. Find shortest paths for all pairs of nodes.

Many applications!
Single-Source Shortest Paths:
Non-Negative Edge Lengths

Single-Source Shortest Path Problems

1. **Input:** A (undirected or directed) graph $G = (V, E)$ with non-negative edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

2. Given nodes s, t find shortest path from s to t.

3. Given node s find shortest path from s to all other nodes.
Single-Source Shortest Path Problems

1. **Input**: A (undirected or directed) graph $G = (V, E)$ with non-negative edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

2. Given nodes s, t find shortest path from s to t.

3. Given node s find shortest path from s to all other nodes.

Restrict attention to directed graphs

Undirected graph problem can be reduced to directed graph problem
Special case: All edge lengths are 1.
Special case: All edge lengths are 1.

1. Run **BFS**\((s)\) to get shortest path distances from \(s\) to all other nodes.
2. \(O(m + n)\) time algorithm.
Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.

1. Run **BFS**(s) to get shortest path distances from s to all other nodes.
2. $O(m + n)$ time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all e? Can we use **BFS**?
Special case: All edge lengths are 1.

1. Run **BFS**\((s)\) to get shortest path distances from \(s\) to all other nodes.

2. \(O(m + n)\) time algorithm.

Special case: Suppose \(\ell(e)\) is an integer for all \(e\)? Can we use **BFS**? Reduce to unit edge-length problem by placing \(\ell(e) - 1\) dummy nodes on \(e\)
Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.

1. Run **BFS**(s) to get shortest path distances from s to all other nodes.

2. $O(m + n)$ time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all e? Can we use **BFS**? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e
Let $L = \max_e \ell(e)$. New graph has $O(mL)$ edges and $O(mL + n)$ nodes. BFS takes $O(mL + n)$ time. Not efficient if L is large.
Towards an algorithm

Why does BFS work?

Lemma

Let \(G \) be a directed graph with non-negative edge lengths. Let \(\text{dist}(s, v) \) denote the shortest path length from \(s \) to \(v \). If \(s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \) is a shortest path from \(s \) to \(v_k \) then for \(1 \leq i < k \):

\[
\text{dist}(s, v_i) \leq \text{dist}(s, v_k)
\]

Relies on non-neg edge lengths.
Towards an algorithm

Why does **BFS** work?

BFS(s) explores nodes in increasing (shortest) distance from s
Towards an algorithm

Why does **BFS** work?

BFS(s) explores nodes in increasing (shortest) distance from **s**

Lemma

Let \(G \) be a directed graph with non-negative edge lengths. Let \(\text{dist}(s, v) \) denote the shortest path length from \(s \) to \(v \). If \(s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \) is a shortest path from \(s \) to \(v_k \), then for \(1 \leq i < k \):

1. \(s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i \) is a shortest path from \(s \) to \(v_i \)
2. \(\text{dist}(s, v_i) \leq \text{dist}(s, v_k) \). Relies on non-neg edge lengths.
A proof by picture

Shortest path from v_0 to v_6
A proof by picture

Shorter path from v_0 to v_4

$s = v_0$

Shortest path from v_0 to v_6
A proof by picture

A shorter path from v_0 to v_6. A contradiction.

Shortest path from v_0 to v_6
A Basic Strategy

Explore vertices in increasing order of (shortest) distance from s:
(For simplicity assume that nodes are at different distances from s and that no edge has zero length)

Initialize for each node v, $\text{dist}(s, v) = \infty$
Initialize $X = \{s\}$
for $i = 2$ to $|V|$ do
 (* Invariant: X contains the $i - 1$ closest nodes to s *)
 Among nodes in $V - X$, find the node v that is the i’th closest to s
 Update $\text{dist}(s, v)$
 $X = X \cup \{v\}$
A Basic Strategy

Explore vertices in increasing order of (shortest) distance from s: (For simplicity assume that nodes are at different distances from s and that no edge has zero length)

Initialize for each node v, $\text{dist}(s, v) = \infty$
Initialize $X = \{s\}$,
for $i = 2$ to $|V|$ do

(* Invariant: X contains the $i-1$ closest nodes to s *)
Among nodes in $V - X$, find the node v that is the $i\text{'}$th closest to s
Update $\text{dist}(s, v)$
$X = X \cup \{v\}$

How can we implement the step in the for loop?
Finding the ith closest node

1. X contains the $i - 1$ closest nodes to s
2. Want to find the ith closest node from $V - X$.

What do we know about the ith closest node?
Finding the ith closest node

1. X contains the $i - 1$ closest nodes to s
2. Want to find the ith closest node from $V - X$.

What do we know about the ith closest node?

Corollary

*The ith closest node is adjacent to X.***
Finding the ith closest node

Claim

Let P be a shortest path from s to v where v is the ith closest node. Then, all intermediate nodes in P belong to X.

Proof.

If P had an intermediate node u not in X then u will be closer to s than v. Implies v is not the ith closest node to s—recall that X already has the i closest nodes.
Finding the ith closest node

Claim

Let P be a shortest path from s to v where v is the ith closest node. Then, all intermediate nodes in P belong to X.

Proof.

If P had an intermediate node u not in X then u will be closer to s than v. Implies v is not the i’th closest node to s - recall that X already has the $i - 1$ closest nodes.
Finding the ith closest node repeatedly

An example
Finding the ith closest node repeatedly

An example
Finding the ith closest node repeatedly

An example

![Graph with nodes and edges labeled with distances.]

- $a
ightarrow c
ightarrow f$

- $a < c$

- b, e, f, d

- $q, 13, ?$

- $\sqrt{24}$
Finding the ith closest node repeatedly

An example

```
a b c
e f d
13 19 36
X → f
a → b → f
a → l → f
19
24
```
Finding the \(i \)th closest node repeatedly

An example
Finding the ith closest node repeatedly

An example
Finding the \(i \)th closest node repeatedly

An example

(UIUC) CS/ECE 374 32 March 30, 2021 32 / 45
Finding the ith closest node repeatedly

An example
Finding the ith closest node repeatedly

An example
Finding the ith closest node

1. X contains the $i - 1$ closest nodes to s

2. Want to find the ith closest node from $V - X$.

1. For each $u \in V - X$ let $P(s, u, X)$ be a shortest path from s to u using only nodes in X as intermediate vertices.

2. Let $d'(s, u)$ be the length of $P(s, u, X)$.
Finding the ith closest node

1. X contains the $i-1$ closest nodes to s
2. Want to find the ith closest node from $V - X$.

For each $u \in V - X$ let $P(s, u, X)$ be a shortest path from s to u using only nodes in X as intermediate vertices.

Let $d'(s, u)$ be the length of $P(s, u, X)$

Observations: for each $u \in V - X$,

1. $\text{dist}(s, u) \leq d'(s, u)$ since we are constraining the paths
2. $d'(s, u) = \min_{t \in X}(\text{dist}(s, t) + \ell(t, u))$
Finding the \(i \)th closest node

\(X \) contains the \(i - 1 \) closest nodes to \(s \)

Want to find the \(i \)th closest node from \(V - X \).

For each \(u \in V - X \) let \(P(s, u, X) \) be a shortest path from \(s \) to \(u \) using only nodes in \(X \) as intermediate vertices.

Let \(d'(s, u) \) be the length of \(P(s, u, X) \)

Observations: for each \(u \in V - X \),

\[\text{dist}(s, u) \leq d'(s, u) \] since we are constraining the paths

\[d'(s, u) = \min_{t \in X} (\text{dist}(s, t) + \ell(t, u)) \]

Lemma

If \(v \) is the \(i \)th closest node to \(s \), then \(d'(s, v) = \text{dist}(s, v) \).
Finding the ith closest node

Lemma

Given:

1. X: Set of $i - 1$ closest nodes to s.
2. $d'(s, u) = \min_{t \in X} (\text{dist}(s, t) + \ell(t, u))$

If v is an ith closest node to s, then $d'(s, v) = \text{dist}(s, v)$.

Proof.

Let v be the ith closest node to s. Then there is a shortest path P from s to v that contains only nodes in X as intermediate nodes (see previous claim). Therefore $d'(s, v) = \text{dist}(s, v)$.
Finding the ith closest node

Lemma

If v is an ith closest node to s, then $d'(s, v) = \text{dist}(s, v)$.

Corollary

The ith closest node to s is the node $v \in V - X$ such that $d'(s, v) = \min_{u \in V - X} d'(s, u)$.
Finding the ith closest node

Lemma

If v is an ith closest node to s, then $d'(s, v) = \text{dist}(s, v)$.

Corollary

The ith closest node to s is the node $v \in V - X$ such that $d'(s, v) = \min_{u \in V - X} d'(s, u)$.

Proof.

For every node $u \in V - X$, $\text{dist}(s, u) \leq d'(s, u)$ and for the ith closest node v, $\text{dist}(s, v) = d'(s, v)$. Moreover, $\text{dist}(s, u) \geq \text{dist}(s, v)$ for each $u \in V - X$.

(Proof details)
Algorithm

Initialize for each node \(v \): \(\text{dist}(s, v) = \infty \)

Initialize \(X = \emptyset, \ d'(s, s) = 0 \)

for \(i = 1 \) to \(|V| \) do

(* Invariant: \(X \) contains the \(i - 1 \) closest nodes to \(s \) *)

(* Invariant: \(d'(s, u) \) is shortest path distance from \(u \) to \(s \) using only \(X \) as intermediate nodes*)

Let \(v \) be such that \(d'(s, v) = \min_{u \in V - X} d'(s, u) \)

\(\text{dist}(s, v) = d'(s, v) \)

\(X = X \cup \{ v \} \)

for each node \(u \) in \(V - X \) do

\(d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right) \)
Initialize for each node \(v \): \(\text{dist}(s, v) = \infty \)

Initialize \(X = \emptyset, \ d'(s, s) = 0 \)

for \(i = 1 \) to \(|V| \) do

(* Invariant: \(X \) contains the \(i - 1 \) closest nodes to \(s \) *)

(* Invariant: \(d'(s, u) \) is shortest path distance from \(u \) to \(s \) using only \(X \) as intermediate nodes*)

Let \(v \) be such that \(d'(s, v) = \min_{u \in V - X} d'(s, u) \)

\(\text{dist}(s, v) = d'(s, v) \)

\(X = X \cup \{v\} \)

for each node \(u \) in \(V - X \) do

\(d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right) \)

Correctness: By induction on \(i \) using previous lemmas.
Initialize for each node v: $\text{dist}(s, v) = \infty$

Initialize $X = \emptyset$, $d'(s, s) = 0$

for $i = 1$ to $|V|$ do

(* Invariant: X contains the $i - 1$ closest nodes to s *)

(* Invariant: $d'(s, u)$ is shortest path distance from u to s
 using only X as intermediate nodes*)

Let v be such that $d'(s, v) = \min_{u \in V - X} d'(s, u)$

$\text{dist}(s, v) = d'(s, v)$

$X = X \cup \{v\}$

for each node u in $V - X$ do

$$d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right)$$

Correctness: By induction on i using previous lemmas.

Running time:
Algorithm

Initialize for each node \(v \): \(\text{dist}(s, v) = \infty \)
Initialize \(X = \emptyset, \ d'(s, s) = 0 \)
for \(i = 1 \) to \(|V| \) do
 (* Invariant: \(X \) contains the \(i - 1 \) closest nodes to \(s \) *)
 (* Invariant: \(d'(s, u) \) is shortest path distance from \(u \) to \(s \)
 using only \(X \) as intermediate nodes*)
 Let \(v \) be such that \(d'(s, v) = \min_{u \in V - X} d'(s, u) \)
 \(\text{dist}(s, v) = d'(s, v) \)
 \(X = X \cup \{ v \} \)
 for each node \(u \) in \(V - X \) do
 \(d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right) \)

Correctness: By induction on \(i \) using previous lemmas.
Running time: \(O(n \cdot (n + m)) \) time.

\(n \) outer iterations. In each iteration, \(d'(s, u) \) for each \(u \) by
scanning all edges out of nodes in \(X \); \(O(m + n) \) time/iteration.
Improved Algorithm

1. Main work is to compute the $d'(s, u)$ values in each iteration.
2. $d'(s, u)$ changes from iteration i to $i + 1$ only because of the node v that is added to X in iteration i.

$\text{Running time: } O(m + n^2)$ time.
Improved Algorithm

1. Main work is to compute the $d'(s, u)$ values in each iteration

2. $d'(s, u)$ changes from iteration i to $i + 1$ only because of the node v that is added to X in iteration i.

Initialize for each node v, $\text{dist}(s, v) = d'(s, v) = \infty$

Initialize $X = \emptyset$, $d'(s, s) = 0$

for $i = 1$ to $|V|$ do

// X contains the $i - 1$ closest nodes to s, // and the values of $d'(s, u)$ are current

Let v be node realizing $d'(s, v) = \min_{u \in V - X} d'(s, u)$

$\text{dist}(s, v) = d'(s, v)$

$X = X \cup \{v\}$

Update $d'(s, u)$ for each u in $V - X$ as follows:

$$d'(s, u) = \min\left(d'(s, u), \text{dist}(s, v) + \ell(v, u)\right)$$

Running time:
Improved Algorithm

Initialize for each node v, $\text{dist}(s, v) = d'(s, v) = \infty$

Initialize $X = \emptyset$, $d'(s, s) = 0$

for $i = 1$ to $|V|$ do

 // X contains the $i-1$ closest nodes to s,
 // and the values of $d'(s, u)$ are current

 Let v be node realizing $d'(s, v) = \min_{u \in V - X} d'(s, u)$

 $\text{dist}(s, v) = d'(s, v)$

 $X = X \cup \{v\}$

 Update $d'(s, u)$ for each u in $V - X$ as follows:

 \[
 d'(s, u) = \min\left(d'(s, u), \text{dist}(s, v) + \ell(v, u)\right)
 \]

Running time: $O(m + n^2)$ time.

1. n outer iterations and in each iteration following steps
2. updating $d'(s, u)$ after v is added takes $O(\text{deg}(v))$ time so total work is $O(m)$ since a node enters X only once
3. Finding v from $d'(s, u)$ values is $O(n)$ time
Dijkstra’s Algorithm

1. eliminate \(d'(s, u) \) and let \(\text{dist}(s, u) \) maintain it
2. update \(\text{dist} \) values after adding \(v \) by scanning edges out of \(v \)

Initialize for each node \(v \), \(\text{dist}(s, v) = \infty \)
Initialize \(X = \emptyset \), \(\text{dist}(s, s) = 0 \)
for \(i = 1 \) to \(|V| \) do
 Let \(v \) be such that \(\text{dist}(s, v) = \min_{u \in V - X} \text{dist}(s, u) \)
 \(X = X \cup \{v\} \)
 for each \(u \) in \(\text{Adj}(v) \) do
 \(\text{dist}(s, u) = \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u)) \)

Priority Queues to maintain \(\text{dist} \) values for faster running time
Dijkstra’s Algorithm

1. eliminate $d'(s, u)$ and let $\text{dist}(s, u)$ maintain it
2. update dist values after adding v by scanning edges out of v

Initialize for each node v, $\text{dist}(s, v) = \infty$
Initialize $X = \emptyset$, $\text{dist}(s, s) = 0$
for $i = 1$ to $|V|$ do
 Let v be such that $\text{dist}(s, v) = \min_{u \in V - X} \text{dist}(s, u)$
 $X = X \cup \{v\}$
 for each u in $\text{Adj}(v)$ do
 $\text{dist}(s, u) = \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u))$

Priority Queues to maintain dist values for faster running time

Using heaps and standard priority queues: $O((m + n) \log n)$
Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

1. **makePQ**: create an empty queue.
2. **findMin**: find the minimum key in S.
3. **extractMin**: Remove $v \in S$ with smallest key and return it.
4. **insert(v, $k(v)$)**: Add new element v with key $k(v)$ to S.
5. **delete(v)**: Remove element v from S.

All operations can be performed in $O(\log n)$ time. decreaseKey is implemented via delete and insert.
Priority Queues

Data structure to store a set S of n elements where each element $\nu \in S$ has an associated real/integer key $k(\nu)$ such that the following operations:

1. **makePQ:** create an empty queue.
2. **findMin:** find the minimum key in S.
3. **extractMin:** Remove $\nu \in S$ with smallest key and return it.
4. **insert(ν, $k(\nu)$):** Add new element ν with key $k(\nu)$ to S.
5. **delete(ν):** Remove element ν from S.
6. **decreaseKey(ν, $k'(\nu)$):** decrease key of ν from $k(\nu)$ (current key) to $k'(\nu)$ (new key). Assumption: $k'(\nu) \leq k(\nu)$.
7. **meld:** merge two separate priority queues into one.
Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

1. **makePQ**: create an empty queue.
2. **findMin**: find the minimum key in S.
3. **extractMin**: Remove $v \in S$ with smallest key and return it.
4. **insert**(v, $k(v)$): Add new element v with key $k(v)$ to S.
5. **delete**(v): Remove element v from S.
6. **decreaseKey**(v, $k'(v)$): decrease key of v from $k(v)$ (current key) to $k'(v)$ (new key). Assumption: $k'(v) \leq k(v)$.
7. **meld**: merge two separate priority queues into one.

All operations can be performed in $O(\log n)$ time. **decreaseKey** is implemented via **delete** and **insert**.
Dijkstra’s Algorithm using Priority Queues

\[
Q \leftarrow \text{makePQ}()
\]

\[
\text{insert}(Q, (s, 0))
\]

\[
\text{for each node } u \neq s \text{ do}
\]

\[
\text{insert}(Q, (u, \infty))
\]

\[
X \leftarrow \emptyset
\]

\[
\text{for } i = 1 \text{ to } |V| \text{ do}
\]

\[
(v, \text{dist}(s, v)) = \text{extractMin}(Q)
\]

\[
X = X \cup \{v\}
\]

\[
\text{for each } u \text{ in } \text{Adj}(v) \text{ do}
\]

\[
\text{decreaseKey}(Q, (u, \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u))))
\]

Priority Queue operations:

1. \(O(n)\) insert operations
2. \(O(n)\) extractMin operations
3. \(O(m)\) decreaseKey operations
Using Heaps

Store elements in a heap based on the key value

1. All operations can be done in $O(\log n)$ time
Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value

All operations can be done in $O(\log n)$ time

Dijkstra’s algorithm can be implemented in $O((n + m) \log n)$ time.
Fibonacci Heaps

1. extractMin, insert, delete, meld in $O(\log n)$ time
2. decreaseKey in $O(1)$ amortized time:
Fibonacci Heaps

1. **extractMin, insert, delete, meld** in \(O(\log n) \) time

2. **decreaseKey** in \(O(1) \) amortized time: \(\ell \) decreaseKey operations for \(\ell \geq n \) take together \(O(\ell) \) time

3. Relaxed Heaps: **decreaseKey** in \(O(1) \) worst case time but at the expense of **meld** (not necessary for Dijkstra’s algorithm)
Fibonacci Heaps

1. `extractMin`, `insert`, `delete`, `meld` in $O(\log n)$ time
2. `decreaseKey` in $O(1)$ amortized time: ℓ `decreaseKey` operations for $\ell \geq n$ take together $O(\ell)$ time
3. Relaxed Heaps: `decreaseKey` in $O(1)$ worst case time but at the expense of `meld` (not necessary for Dijkstra’s algorithm)

Dijkstra’s algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
Fibonacci Heaps

1. extractMin, insert, delete, meld in $O(\log n)$ time
2. decreaseKey in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
3. Relaxed Heaps: decreaseKey in $O(1)$ worst case time but at the expense of meld (not necessary for Dijkstra’s algorithm)

Dijkstra’s algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.

Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)
Dijkstra’s algorithm finds the shortest path distances from s to V.

Question: How do we find the paths themselves?
Shortest Path Tree

Dijkstra’s algorithm finds the shortest path distances from \(s \) to \(V \).

Question: How do we find the paths themselves?

```
Q = makePQ()
insert(Q, (s, 0))
prev(s) <- null
for each node \( u \neq s \) do
  insert(Q, (u, \( \infty \)))
  prev(u) <- null

X = \emptyset
for \( i = 1 \) to \( |V| \) do
  (v, dist(s, v)) = extractMin(Q)
  X = X \cup \{v\}
  for each \( u \) in Adj(v) do
    if \( \text{dist}(s, v) + \ell(v, u) < \text{dist}(s, u) \) then
      decreaseKey(Q, (u, \text{dist}(s, v) + \ell(v, u)))
      prev(u) = v
```
Lemma

The edge set \((u, \text{prev}(u))\) is the reverse of a shortest path tree rooted at \(s\). For each \(u\), the reverse of the path from \(u\) to \(s\) in the tree is a shortest path from \(s\) to \(u\).

Proof Sketch.

1. The edge set \(\{(u, \text{prev}(u)) \mid u \in V\}\) induces a directed in-tree rooted at \(s\) (Why?)

2. Use induction on \(|X|\) to argue that the tree is a shortest path tree for nodes in \(V\).
Shortest paths to s

Dijkstra’s algorithm gives shortest paths from s to all nodes in V. How do we find shortest paths from all of V to s?
Shortest paths to s

Dijkstra’s algorithm gives shortest paths from s to all nodes in V. How do we find shortest paths from all of V to s?

1. In undirected graphs shortest path from s to u is a shortest path from u to s so there is no need to distinguish.

2. In directed graphs, use Dijkstra’s algorithm in G^{rev}!