BFS and Dijkstra’s Algorithm

Lecture 17
Part I

A Brief Review
Given $G = (V, E)$ a directed graph and vertex $u \in V$. Let $n = |V|$.

Explore(G,u):

array $Visited[1..n]$

Initialize: Set $Visited[i] = \text{FALSE}$ for $1 \leq i \leq n$

List: $ToExplore$, S

Add u to $ToExplore$ and to S, $Visited[u] = \text{TRUE}$

Make tree T with root as u

while ($ToExplore$ is non-empty) do

Remove node x from $ToExplore$

for each edge (x, y) in $\text{Adj}(x)$ do

if ($Visited[y] == \text{FALSE}$)

$Visited[y] = \text{TRUE}$

Add y to $ToExplore$

Add y to S

Add y to T with edge (x, y)

Output S
Properties of Basic Search

DFS and **BFS** are special case of BasicSearch.

1. Depth First Search (**DFS**): use stack data structure to implement the list *ToExplore*
2. Breadth First Search (**BFS**): use queue data structure to implementing the list *ToExplore*
Keep track of when nodes are visited.

DFS with Visit Times

DFS\((G)\)

\[
\text{for all } u \in V(G) \text{ do}
\]

Mark \(u \) as unvisited

\(T \) is set to \(\emptyset \)

\(time = 0 \)

DFS\((u)\)

Mark \(u \) as visited

\(pre(u) = ++time \)

DFS\((u)\)

DFS\((v)\)

Output \(T \)

Output \(\emptyset \)

DFS\((u)\)

DFS\((v)\)

Output \(T \)

Output \(\emptyset \)

Mark \(u \) as visited

DFS\((u)\)

DFS\((v)\)

Output \(T \)

Output \(\emptyset \)

Mark \(u \) as visited

DFS\((u)\)

DFS\((v)\)

Output \(T \)

Output \(\emptyset \)
An Edge in DAG

Proposition

If G is a DAG and $\text{post}(u) < \text{post}(v)$, then (u, v) is not in G. i.e., for all edges (u, v) in a DAG, $\text{post}(u) > \text{post}(v)$.
Reverse post-order is topological order

a \rightarrow b \rightarrow c

\rightarrow d \rightarrow e

\rightarrow f \rightarrow g

\rightarrow h
Reverse post-order is topological order
Sort SCCs

The SCCs are topologically sorted by arranging them in decreasing order of their highest post number.

Graph G

Graph of SCCs G^{SCC}
A Different DFS

Graph of G^{SCC}
Part II

Breadth First Search
Breadth First Search (BFS)

Overview

A. BFS is obtained from BasicSearch by processing edges using a data structure called a queue.

B. It processes the vertices in the graph in the order of their shortest distance from the vertex s (the start vertex).

As such...

1. DFS good for exploring graph structure
2. BFS good for exploring distances
Queue Data Structure

Queues

A **queue** is a list of elements which supports the operations:

1. **enqueue**: Adds an element to the end of the list
2. **dequeue**: Removes an element from the front of the list

Elements are extracted in **first-in first-out (FIFO)** order, i.e., elements are removed in the order in which they were inserted.
BFS Algorithm

Given (undirected or directed) graph $G = (V, E)$ and node $s \in V$

<table>
<thead>
<tr>
<th>BFS(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark all vertices as unvisited</td>
</tr>
<tr>
<td>Initialize search tree T to be empty</td>
</tr>
<tr>
<td>Mark vertex s as visited</td>
</tr>
<tr>
<td>set Q to be the empty queue</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>enq(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>while Q is nonempty do</td>
</tr>
<tr>
<td>$u = \text{deq}(Q)$</td>
</tr>
<tr>
<td>for each vertex $v \in \text{Adj}(u)$</td>
</tr>
<tr>
<td>if v is not visited then</td>
</tr>
<tr>
<td>add edge (u, v) to T</td>
</tr>
<tr>
<td>Mark v as visited and enq(v)</td>
</tr>
</tbody>
</table>

Proposition

$\text{BFS}(s)$ runs in $O(n + m)$ time.
BFS: An Example in Undirected Graphs

1. \([1]\)
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]

BFS tree is the set of black edges.
BFS: An Example in Undirected Graphs

1. [1]
2. [2, 3]
3. [3, 4, 5]
4. [4, 5, 7, 8]

BFS tree is the set of black edges.
BFS: An Example in Undirected Graphs

1. [1] 4. [4,5,7,8]
2. [2,3] 5. [5,7,8]
3. [3,4,5]
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]
5. [5,7,8]
6. [7,8,6]

BFS tree is the set of black edges.
BFS: An Example in Undirected Graphs

2. [2,3] 5. [5,7,8]
3. [3,4,5] 6. [7,8,6]
BFS: An Example in Undirected Graphs

3. [3,4,5] 6. [7,8,6]
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]
5. [5,7,8]
6. [7,8,6]
7. [8,6]
8. [6]
9. []
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]
5. [5,7,8]
6. [7,8,6]
7. [8,6]
8. [6]
9. []

BFS tree is the set of black edges.
BFS: An Example in Directed Graphs

Definition

A directed graph (also called a digraph) is $G = (V, E)$, where

- V is a set of vertices or nodes
- $E \subseteq V \times V$ is set of ordered pairs of vertices called edges

Viswanathan CS473ug
BFS with Distance

BFS(s)

Mark all vertices as unvisited; for each v set $\text{dist}(v) = \infty$

Initialize search tree T to be empty

Mark vertex s as visited and set $\text{dist}(s) = 0$

set Q to be the empty queue

$\text{enq}(s)$

while Q is nonempty do

$u = \text{deq}(Q)$

for each vertex $v \in \text{Adj}(u)$ do

if v is not visited do

add edge (u, v) to T

Mark v as visited, $\text{enq}(v)$

and set $\text{dist}(v) = \text{dist}(u) + 1$
Properties of BFS: Undirected Graphs

Theorem

The following properties hold upon termination of $\text{BFS}(s)$

A. The search tree contains exactly the set of vertices in the connected component of s.
B. If $\text{dist}(u) < \text{dist}(v)$ then u is visited before v.
C. For every vertex u, $\text{dist}(u)$ is the length of a shortest path (in terms of number of edges) from s to u.
D. If u, v are in connected component of s and $e = \{u, v\}$ is an edge of G, then $|\text{dist}(u) - \text{dist}(v)| \leq 1$.
Properties of BFS: Directed Graphs

Theorem

The following properties hold upon termination of $\text{BFS}(s)$:

A. The search tree contains exactly the set of vertices reachable from s

B. If $\text{dist}(u) < \text{dist}(v)$ then u is visited before v

C. For every vertex u, $\text{dist}(u)$ is the length of shortest path from s to u

D. If u is reachable from s and $e = (u, v)$ is an edge of G, then $\text{dist}(v) - \text{dist}(u) \leq 1$.

Not necessarily the case that $\text{dist}(u) - \text{dist}(v) \leq 1$.
BFS with Layers

BFS Layers(s):

Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set $L_0 = \{s\}$

$i = 0$

while L_i is not empty do

initialize L_{i+1} to be an empty list

for each u in L_i do

for each edge $(u, v) \in \text{Adj}(u)$ do

if v is not visited

mark v as visited

add (u, v) to tree T

add v to L_{i+1}

$i = i + 1$

Running time: $O(n + m)$
BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set $L_0 = \{s\}$

$i = 0$

while L_i is not empty **do**

initialize L_{i+1} to be an empty list

for each u in L_i **do**

for each edge $(u, v) \in \text{Adj}(u)$ **do**

if v is not visited

mark v as visited

add (u, v) to tree T

add v to L_{i+1}

$i = i + 1$

Running time: $O(n + m)$
BFS: An Example in Undirected Graphs
BFS: An Example in Undirected Graphs
BFS: An Example in Undirected Graphs

![Undirected Graphs Diagram]

(UIUC) CS/ECE 374 21 March 30, 2021 21 / 45
BFS: An Example in Undirected Graphs
BFS: An Example in Undirected Graphs
BFS: An Example in Undirected Graphs

![Undirected Graph Example](image-url)
BFS: An Example in Undirected Graphs
Part III

Shortest Paths and Dijkstra’s Algorithm
Shortest Path Problems

Input: A (undirected or directed) graph \(G = (V, E) \) with edge lengths (or costs). For edge \(e = (u, v) \), \(\ell(e) = \ell(u, v) \) is its length.

1. Given nodes \(s, t \) find shortest path from \(s \) to \(t \).
2. Given node \(s \) find shortest path from \(s \) to all other nodes.
3. Find shortest paths for all pairs of nodes.

Many applications!
Single-Source Shortest Paths:
Non-Negative Edge Lengths

Single-Source Shortest Path Problems

1. **Input**: A (undirected or directed) graph $G = (V, E)$ with non-negative edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.
2. Given nodes s, t find shortest path from s to t.
3. Given node s find shortest path from s to all other nodes.
Single-Source Shortest Paths:
Non-Negative Edge Lengths

Single-Source Shortest Path Problems

1. **Input:** A (undirected or directed) graph $G = (V, E)$ with non-negative edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

2. Given nodes s, t find shortest path from s to t.

3. Given node s find shortest path from s to all other nodes.

1. Restrict attention to directed graphs

2. Undirected graph problem can be reduced to directed graph problem
Special case: All edge lengths are 1.
Special case: All edge lengths are 1.

1. Run \(\text{BFS}(s) \) to get shortest path distances from \(s \) to all other nodes.
2. \(O(m + n) \) time algorithm.
Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.

1. Run **BFS**(s) to get shortest path distances from s to all other nodes.

2. \(O(m + n) \) time algorithm.

Special case: Suppose \(\ell(e) \) is an integer for all \(e \)? Can we use **BFS**?
Special case: All edge lengths are 1.

1. Run **BFS**\((s)\) to get shortest path distances from s to all other nodes.

2. **\(O(m + n)\)** time algorithm.

Special case: Suppose \(\ell(e)\) is an integer for all \(e\)? Can we use **BFS**? Reduce to unit edge-length problem by placing \(\ell(e) - 1\) dummy nodes on \(e\)
Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.

1. Run BFS(s) to get shortest path distances from s to all other nodes.

2. $O(m + n)$ time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all e? Can we use BFS? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e.
Let $L = \max_e \ell(e)$. New graph has $O(mL)$ edges and $O(mL + n)$ nodes. BFS takes $O(mL + n)$ time. Not efficient if L is large.
Towards an algorithm

Why does **BFS** work?

Lemma

Let G be a directed graph with non-negative edge lengths. Let $\text{dist}(s, v)$ denote the shortest path length from s to v. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k, then for $1 \leq i < k$:

$$s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$$

is a shortest path from s to v_i.

Relies on non-negative edge lengths.
Towards an algorithm

Why does **BFS** work?

BFS(s) explores nodes in increasing (shortest) distance from s.
Towards an algorithm

Why does BFS work?

BFS(s) explores nodes in increasing (shortest) distance from s

Lemma

Let G be a directed graph with non-negative edge lengths. Let $\text{dist}(s, v)$ denote the shortest path length from s to v. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

1. $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i

2. $\text{dist}(s, v_i) \leq \text{dist}(s, v_k)$. Relies on non-neg edge lengths.
A proof by picture

\[s = v_0 \]

Shortest path from \(v_0 \) to \(v_6 \)
A proof by picture

Shorter path from v_0 to v_4

$s = v_0$

Shortest path from v_0 to v_6
A proof by picture

Shortest path from v_0 to v_6. A contradiction.

Shortest path from v_0 to v_6
A Basic Strategy

Explore vertices in increasing order of (shortest) distance from \(s \):
(For simplicity assume that nodes are at different distances from \(s \) and that no edge has zero length)

Initialize for each node \(v \), \(\text{dist}(s,v) = \infty \)
Initialize \(X = \{s\} \),
for \(i = 2 \) to \(|V| \) do

(* Invariant: \(X \) contains the \(i - 1 \) closest nodes to \(s \) *)
Among nodes in \(V - X \), find the node \(v \) that is the \(i' \)'th closest to \(s \)
Update \(\text{dist}(s,v) \)
\(X = X \cup \{v\} \)
A Basic Strategy

Explore vertices in increasing order of (shortest) distance from s:
(For simplicity assume that nodes are at different distances from s
and that no edge has zero length)

```
Initialize for each node $v$, $\text{dist}(s, v) = \infty$
Initialize $X = \{s\}$,
for $i = 2$ to $|V|$ do
    (* Invariant: $X$ contains the $i - 1$ closest nodes to $s$ *)
    Among nodes in $V - X$, find the node $v$ that is the
    $i$’th closest to $s$
    Update $\text{dist}(s, v)$
    $X = X \cup \{v\}$
```

How can we implement the step in the for loop?
Finding the ith closest node

1. X contains the $i - 1$ closest nodes to s
2. Want to find the ith closest node from $V - X$.

What do we know about the ith closest node?
Finding the ith closest node

1. X contains the $i - 1$ closest nodes to s.
2. Want to find the ith closest node from $V - X$.

What do we know about the ith closest node?

Corollary

The ith closest node is adjacent to X.
Claim

Let P be a shortest path from s to v where v is the ith closest node. Then, all intermediate nodes in P belong to X.
Finding the ith closest node

Claim

Let P be a shortest path from s to v where v is the ith closest node. Then, all intermediate nodes in P belong to X.

Proof.

If P had an intermediate node u not in X then u will be closer to s than v. Implies v is not the i’th closest node to s - recall that X already has the $i-1$ closest nodes.
Finding the ith closest node repeatedly

An example
Finding the \(i \)th closest node repeatedly

An example

![Graph](image-url)
Finding the \(i\)th closest node

1. \(X\) contains the \(i - 1\) closest nodes to \(s\)
2. Want to find the \(i\)th closest node from \(V - X\).

For each \(u \in V - X\) let \(P(s, u, X)\) be a shortest path from \(s\) to \(u\) using only nodes in \(X\) as intermediate vertices.

2. Let \(d'(s, u)\) be the length of \(P(s, u, X)\)
Finding the ith closest node

1. X contains the $i-1$ closest nodes to s

2. Want to find the ith closest node from $V - X$.

For each $u \in V - X$ let $P(s, u, X)$ be a shortest path from s to u using only nodes in X as intermediate vertices.

Let $d'(s, u)$ be the length of $P(s, u, X)$

Observations: for each $u \in V - X$,

1. $\text{dist}(s, u) \leq d'(s, u)$ since we are constraining the paths

2. $d'(s, u) = \min_{t \in X}(\text{dist}(s, t) + \ell(t, u))$
Finding the ith closest node

1. X contains the $i-1$ closest nodes to s

2. Want to find the ith closest node from $V - X$.

For each $u \in V - X$ let $P(s, u, X)$ be a shortest path from s to u using only nodes in X as intermediate vertices.

Let $d'(s, u)$ be the length of $P(s, u, X)$

Observations: for each $u \in V - X$,

1. $\text{dist}(s, u) \leq d'(s, u)$ since we are constraining the paths

2. $d'(s, u) = \min_{t \in X} (\text{dist}(s, t) + \ell(t, u))$

Lemma

If v is the ith closest node to s, then $d'(s, v) = \text{dist}(s, v)$.
Finding the ith closest node

Lemma

Given:

1. X: Set of $i - 1$ closest nodes to s.
2. $d'(s, u) = \min_{t \in X} (\text{dist}(s, t) + \ell(t, u))$

If v is an ith closest node to s, then $d'(s, v) = \text{dist}(s, v)$.

Proof.

Let v be the ith closest node to s. Then there is a shortest path P from s to v that contains only nodes in X as intermediate nodes (see previous claim). Therefore $d'(s, v) = \text{dist}(s, v)$. □
Finding the ith closest node

Lemma

If v is an ith closest node to s, then $d'(s, v) = \text{dist}(s, v)$.

Corollary

The ith closest node to s is the node $v \in V - X$ such that $d'(s, v) = \min_{u \in V - X} d'(s, u)$.
Finding the \(i \)th closest node

Lemma

If \(v \) is an \(i \)th closest node to \(s \), then \(d'(s, v) = \text{dist}(s, v) \).

Corollary

The \(i \)th closest node to \(s \) is the node \(v \in V - X \) such that \(d'(s, v) = \min_{u \in V - X} d'(s, u) \).

Proof.

For every node \(u \in V - X \), \(\text{dist}(s, u) \leq d'(s, u) \) and for the \(i \)th closest node \(v \), \(\text{dist}(s, v) = d'(s, v) \). Moreover, \(\text{dist}(s, u) \geq \text{dist}(s, v) \) for each \(u \in V - X \).
Algorithm

Initialize for each node v: $\text{dist}(s, v) = \infty$

Initialize $X = \emptyset$, $d'(s, s) = 0$

for $i = 1$ to $|V|$ do

(* Invariant: X contains the $i - 1$ closest nodes to s *)

(* Invariant: $d'(s, u)$ is shortest path distance from u to s using only X as intermediate nodes*)

Let v be such that $d'(s, v) = \min_{u \in V - X} d'(s, u)$

$\text{dist}(s, v) = d'(s, v)$

$X = X \cup \{v\}$

for each node u in $V - X$ do

$$d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right)$$
Initialize for each node v: $\text{dist}(s, v) = \infty$

Initialize $X = \emptyset$, $d'(s, s) = 0$

for $i = 1$ to $|V|$ do

(* Invariant: X contains the $i - 1$ closest nodes to s *)

(* Invariant: $d'(s, u)$ is shortest path distance from u to s using only X as intermediate nodes*)

Let v be such that $d'(s, v) = \min_{u \in V - X} d'(s, u)$

$\text{dist}(s, v) = d'(s, v)$

$X = X \cup \{v\}$

for each node u in $V - X$ do

$$d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right)$$

Correctness: By induction on i using previous lemmas.
Algorithm

Initialize for each node v: $\text{dist}(s, v) = \infty$

Initialize $X = \emptyset$, $d'(s, s) = 0$

for $i = 1$ to $|V|$ do

(* Invariant: X contains the $i - 1$ closest nodes to s *)

(* Invariant: $d'(s, u)$ is shortest path distance from u to s
 using only X as intermediate nodes*)

Let v be such that $d'(s, v) = \min_{u \in V - X} d'(s, u)$

$\text{dist}(s, v) = d'(s, v)$

$X = X \cup \{v\}$

for each node u in $V - X$ do

$$d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right)$$

Correctness: By induction on i using previous lemmas.

Running time:

$O(n \cdot (n + m))$ time.
Initialization: For each node v, $\text{dist}(s, v) = \infty$

Initialize $X = \emptyset$, $d'(s, s) = 0$

for $i = 1$ to $|V|$ do

(* Invariant: X contains the $i-1$ closest nodes to s *)

(* Invariant: $d'(s, u)$ is shortest path distance from u to s using only X as intermediate nodes*)

Let v be such that $d'(s, v) = \min_{u \in V - X} d'(s, u)$

$\text{dist}(s, v) = d'(s, v)$

$X = X \cup \{v\}$

for each node u in $V - X$ do

$$d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right)$$

Correctness: By induction on i using previous lemmas.

Running time: $O(n \cdot (n + m))$ time.

n outer iterations. In each iteration, $d'(s, u)$ for each u by scanning all edges out of nodes in X; $O(m + n)$ time/iteration.
Improved Algorithm

1. Main work is to compute the $d'(s, u)$ values in each iteration.

2. $d'(s, u)$ changes from iteration i to $i + 1$ only because of the node v that is added to X in iteration i.
Main work is to compute the $d'(s, u)$ values in each iteration. $d'(s, u)$ changes from iteration i to $i + 1$ only because of the node v that is added to X in iteration i.

Initialize for each node v, $\text{dist}(s, v) = d'(s, v) = \infty$

Initialize $X = \emptyset$, $d'(s, s) = 0$

for $i = 1$ to $|V|$ do

// X contains the $i - 1$ closest nodes to s,
// and the values of $d'(s, u)$ are current

Let v be node realizing $d'(s, v) = \min_{u \in V - X} d'(s, u)$

$\text{dist}(s, v) = d'(s, v)$

$X = X \cup \{v\}$

Update $d'(s, u)$ for each u in $V - X$ as follows:

$$d'(s, u) = \min \left(d'(s, u), \text{dist}(s, v) + \ell(v, u) \right)$$

Running time:
Improved Algorithm

Initialize for each node v, $\text{dist}(s, v) = d'(s, v) = \infty$

Initialize $X = \emptyset$, $d'(s, s) = 0$

for $i = 1$ to $|V|$ do

// X contains the $i - 1$ closest nodes to s,
// and the values of $d'(s, u)$ are current

Let v be node realizing $d'(s, v) = \min_{u \in V - X} d'(s, u)$

$\text{dist}(s, v) = d'(s, v)$

$X = X \cup \{v\}$

Update $d'(s, u)$ for each u in $V - X$ as follows:

$$d'(s, u) = \min \left(d'(s, u), \text{dist}(s, v) + \ell(v, u) \right)$$

Running time: $O(m + n^2)$ time.

1. n outer iterations and in each iteration following steps
2. updating $d'(s, u)$ after v is added takes $O(\deg(v))$ time so total work is $O(m)$ since a node enters X only once
3. Finding v from $d'(s, u)$ values is $O(n)$ time
Dijkstra’s Algorithm

1. eliminate \(d'(s, u) \) and let \(\text{dist}(s, u) \) maintain it
2. update \(\text{dist} \) values after adding \(v \) by scanning edges out of \(v \)

```
Initialize for each node \( v \), \( \text{dist}(s, v) = \infty \)
Initialize \( X = \emptyset \), \( \text{dist}(s, s) = 0 \)
for \( i = 1 \) to \( |V| \) do
    Let \( v \) be such that \( \text{dist}(s, v) = \min_{u \in V - X} \text{dist}(s, u) \)
    \( X = X \cup \{v\} \)
for each \( u \) in \( \text{Adj}(v) \) do
    \( \text{dist}(s, u) = \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u)) \)
```

Priority Queues to maintain \(\text{dist} \) values for faster running time
Dijkstra’s Algorithm

1. eliminate $d'(s, u)$ and let $\text{dist}(s, u)$ maintain it
2. update dist values after adding v by scanning edges out of v

```
Initialize for each node $v$, $\text{dist}(s, v) = \infty$
Initialize $X = \emptyset$, $\text{dist}(s, s) = 0$
for $i = 1$ to $|V|$ do
    Let $v$ be such that $\text{dist}(s, v) = \min_{u \in V - X} \text{dist}(s, u)$
    $X = X \cup \{v\}$
    for each $u$ in $\text{Adj}(v)$ do
        $\text{dist}(s, u) = \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u))$
```

Priority Queues to maintain dist values for faster running time

3. Using heaps and standard priority queues: $O((m + n) \log n)$
Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

1. **makePQ**: create an empty queue.
2. **findMin**: find the minimum key in S.
3. **extractMin**: Remove $v \in S$ with smallest key and return it.
4. **insert**(v, $k(v)$): Add new element v with key $k(v)$ to S.
5. **delete**(v): Remove element v from S.

All operations can be performed in $O(\log n)$ time. **decreaseKey** is implemented via **delete** and **insert**.
Priority Queues

Data structure to store a set \(S \) of \(n \) elements where each element \(v \in S \) has an associated real/integer key \(k(v) \) such that the following operations:

1. **makePQ**: create an empty queue.
2. **findMin**: find the minimum key in \(S \).
3. **extractMin**: Remove \(v \in S \) with smallest key and return it.
4. **insert\((v, k(v))\)**: Add new element \(v \) with key \(k(v) \) to \(S \).
5. **delete\((v)\)**: Remove element \(v \) from \(S \).
6. **decreaseKey\((v, k'(v))\)**: decrease key of \(v \) from \(k(v) \) (current key) to \(k'(v) \) (new key). Assumption: \(k'(v) \leq k(v) \).
7. **meld**: merge two separate priority queues into one.
Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

1. **makePQ**: create an empty queue.
2. **findMin**: find the minimum key in S.
3. **extractMin**: Remove $v \in S$ with smallest key and return it.
4. **insert(v, $k(v)$)**: Add new element v with key $k(v)$ to S.
5. **delete(v)**: Remove element v from S.
6. **decreaseKey(v, $k'(v)$)**: decrease key of v from $k(v)$ (current key) to $k'(v)$ (new key). Assumption: $k'(v) \leq k(v)$.
7. **meld**: merge two separate priority queues into one.

All operations can be performed in $O(\log n)$ time. **decreaseKey** is implemented via **delete** and **insert**.
Dijkstra’s Algorithm using Priority Queues

\[Q \leftarrow \text{makePQ}() \]
\[\text{insert}(Q, (s, 0)) \]
\[\text{for each node } u \neq s \text{ do} \]
\[\quad \text{insert}(Q, (u, \infty)) \]
\[X \leftarrow \emptyset \]
\[\text{for } i = 1 \text{ to } |V| \text{ do} \]
\[\quad (v, \text{dist}(s, v)) = \text{extractMin}(Q) \]
\[X = X \cup \{v\} \]
\[\text{for each } u \text{ in } \text{Adj}(v) \text{ do} \]
\[\quad \text{decreaseKey}(Q, (u, \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u)))) \]

Priority Queue operations:

1. \(O(n)\) insert operations
2. \(O(n)\) extractMin operations
3. \(O(m)\) decreaseKey operations
Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value

1. All operations can be done in $O(\log n)$ time
Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value

- All operations can be done in $O(\log n)$ time

Dijkstra’s algorithm can be implemented in $O((n + m) \log n)$ time.
Fibonacci Heaps

1. `extractMin`, `insert`, `delete`, `meld` in $O(\log n)$ time
2. `decreaseKey` in $O(1)$ amortized time:
Fibonacci Heaps

1. extractMin, insert, delete, meld in $O(\log n)$ time
2. decreaseKey in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
3. Relaxed Heaps: decreaseKey in $O(1)$ worst case time but at the expense of meld (not necessary for Dijkstra’s algorithm)
Fibonacci Heaps

1. **extractMin, insert, delete, meld** in $O(\log n)$ time
2. **decreaseKey** in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \ge n$ take together $O(\ell)$ time
3. Relaxed Heaps: **decreaseKey** in $O(1)$ worst case time but at the expense of **meld** (not necessary for Dijkstra’s algorithm)

Dijkstra’s algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

1. **extractMin, insert, delete, meld** in \(O(\log n) \) time
2. **decreaseKey** in \(O(1) \) amortized time: \(\ell \) decreaseKey operations for \(\ell \geq n \) take together \(O(\ell) \) time
3. Relaxed Heaps: **decreaseKey** in \(O(1) \) worst case time but at the expense of **meld** (not necessary for Dijkstra’s algorithm)

1. Dijkstra’s algorithm can be implemented in \(O(n \log n + m) \) time. If \(m = \Omega(n \log n) \), running time is linear in input size.
2. Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)
Dijkstra’s algorithm finds the shortest path distances from s to V.

Question: How do we find the paths themselves?
Dijkstra’s algorithm finds the shortest path distances from s to V.

Question: How do we find the paths themselves?

```plaintext
Q = makePQ()
insert(Q, (s, 0))
prev(s) ← null

for each node $u \neq s$ do
    insert(Q, (u, ∞))
    prev(u) ← null

X = ∅
for $i = 1$ to $|V|$ do
    $(v, dist(s, v)) = extractMin(Q)$
    $X = X \cup \{v\}$
    for each $u$ in Adj(v) do
        if $(dist(s, v) + ℓ(v, u) < dist(s, u))$ then
            decreaseKey(Q, (u, dist(s, v) + ℓ(v, u)))
            prev(u) = v
```

(UIUC) CS/ECE 374 43 / 45
March 30, 2021 43
Lemma

The edge set \((u, \text{prev}(u))\) is the reverse of a shortest path tree rooted at \(s\). For each \(u\), the reverse of the path from \(u\) to \(s\) in the tree is a shortest path from \(s\) to \(u\).

Proof Sketch.

1. The edge set \(\{(u, \text{prev}(u)) \mid u \in V\}\) induces a directed in-tree rooted at \(s\) (Why?)

2. Use induction on \(|X|\) to argue that the tree is a shortest path tree for nodes in \(V\).
Dijkstra’s algorithm gives shortest paths from s to all nodes in V. How do we find shortest paths from all of V to s?
Shortest paths to s

Dijkstra’s algorithm gives shortest paths from s to all nodes in V. How do we find shortest paths from all of V to s?

1. In undirected graphs shortest path from s to u is a shortest path from u to s so there is no need to distinguish.

2. In directed graphs, use Dijkstra’s algorithm in G^{rev}!