CS/ECE 374: Algorithms & Models of Computation

DAGs, DFS and SCC

Lecture 17

Part I

Directed Acyclic Graphs

DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proposition

A directed graph G can be topologically ordered iff it is a DAG.

Topological Ordering/Sorting

Topological Ordering of G

Definition

A topological ordering/topological sorting of G = (V, E) is an ordering \prec on V such that if $(u, v) \in E$ then $u \prec v$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

(UIUC) CS/ECE 374 4 March 25, 2021

What does it mean?

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza \rightarrow eat the pizza, have a Coke.

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza \rightarrow eat the pizza, have a Coke.

Case 2: Circular dependence.

Lemma

A directed graph G can be topologically ordered only if it is a DAG.

Proof.

Suppose G is not a DAG and has a topological ordering \prec . G has a cycle $C = u_1, u_2, \ldots, u_k, u_1$.

Then $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1!$

That is... $u_1 \prec u_1$.

A contradiction (to \prec being an order).

Not possible to topologically order the vertices.

6

Lemma

A directed graph G can be topologically ordered if it is a DAG.

Proof.

Consider the following algorithm:

- Pick a source *u*, output it.
- 2 Remove u and all edges out of u.
- Repeat until graph is empty.

Exercise: prove this gives toplogical sort.

Exercise: show algorithm can be implemented in O(m + n) time.

Topological Sort: Example

Note: A DAG G may have many different topological sorts.

Question: What is a \overline{DAG} with the largest number of distinct topological sorts for a given number n of vertices?

Question: What is a \overline{DAG} with the smallest number of distinct topological sorts for a given number n of vertices?

Part II

DFS in Undirected Graphs

DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

```
\begin{array}{c} \mathsf{DFS}(G) \\ \mathsf{for} \ \mathsf{all} \ u \in V(G) \ \mathsf{do} \\ \quad \mathsf{Mark} \ u \ \mathsf{as} \ \mathsf{unvisited} \\ \quad \mathsf{Set} \ \mathsf{pred}(u) \ \mathsf{to} \ \mathsf{null} \\ \quad T \ \mathsf{is} \ \mathsf{set} \ \mathsf{to} \ \emptyset \\ \quad \mathsf{while} \ \exists \ \mathsf{unvisited} \ u \ \mathsf{do} \\ \quad \mathsf{DFS}(u) \\ \quad \mathsf{Output} \ T \end{array}
```

Implemented using a global array *Visited* for all recursive calls. *T* is the search tree/forest.

Example

Edges classified into two types: $uv \in E$ is a

- 1 tree edge: belongs to T
- non-tree edge: does not belong to T

Properties of DFS tree

Proposition

- **1** Is a forest
- \bigcirc connected components of T are same as those of G.
- 3 If $uv \in E$ is a non-tree edge then, in T, either:
 - $\mathbf{0}$ **u** is an ancestor of \mathbf{v} , or
 - 2 v is an ancestor of u.

Question: Why are there no cross-edges?

DFS with Visit Times

Keep track of when nodes are visited.

```
\begin{array}{c} \mathsf{DFS}(G) \\ \quad \mathsf{for all} \ u \in V(G) \ \mathsf{do} \\ \quad \mathsf{Mark} \ u \ \mathsf{as unvisited} \\ \quad T \ \mathsf{is set to} \ \emptyset \\ \quad \textit{time} = 0 \\ \quad \mathsf{while} \ \exists \mathsf{unvisited} \ u \ \mathsf{do} \\ \quad \mathsf{DFS}(u) \\ \quad \mathsf{Output} \ T \end{array}
```

```
DFS(u)
    Mark u as visited
    pre(u) = ++time
    for each uv in Out(u) do
        if v is not marked then
            add edge uv to T
            DFS(v)
    post(u) = ++time
```

Example

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

• Assume without loss of generality that pre(u) < pre(v). Then v visited after u.

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If DFS(v) invoked before DFS(u) finished,
 post(v) < post(u).

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If DFS(v) invoked before DFS(u) finished, [U, V, V, U] post(v) < post(u).
- If $\mathsf{DFS}(v)$ invoked after $\mathsf{DFS}(u)$ finished, $\mathsf{pre}(v) > \mathsf{post}(u)$

[u,u] [v,v]

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If DFS(v) invoked before DFS(u) finished,
 post(v) < post(u).
- If $\mathsf{DFS}(v)$ invoked after $\mathsf{DFS}(u)$ finished, $\mathsf{pre}(v) > \mathsf{post}(u)$

pre and post numbers useful in several applications of DFS

Part III

DFS in Directed Graphs

DFS in Directed Graphs

```
\begin{array}{c} \mathsf{DFS}(G) \\ \quad \mathsf{Mark \ all \ nodes} \ \textit{\textit{u}} \ \mathsf{as \ unvisited} \\ \quad \textit{\textit{T} \ is \ set \ to} \ \emptyset \\ \quad \textit{\textit{time}} = 0 \\ \quad \mathsf{while \ there \ is \ an \ unvisited \ node} \ \textit{\textit{u}} \ \mathsf{do} \\ \quad \mathsf{DFS}(\textit{\textit{u}}) \\ \quad \mathsf{Output} \ \textit{\textit{T}} \end{array}
```

```
DFS(u)
    Mark u as visited
    pre(u) = ++time
    for each edge (u, v) in Out(u) do
        if v is not visited
            add edge (u, v) to T
            DFS(v)
    post(u) = ++time
```

Example

Generalizing ideas from undirected graphs:

1 DFS(G) takes O(m + n) time.

Generalizing ideas from undirected graphs:

- **1 DFS**(G) takes O(m + n) time.
- ② Edges added form a *branching*: a forest of out-trees. Output of DFS(G) depends on the order in which vertices are considered.

Generalizing ideas from undirected graphs:

- **1 DFS**(G) takes O(m + n) time.
- 2 Edges added form a *branching*: a forest of out-trees. Output of DFS(G) depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$

Generalizing ideas from undirected graphs:

- **1 DFS**(G) takes O(m + n) time.
- Edges added form a branching: a forest of out-trees. Output of DFS(G) depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u)outputs a directed out-tree T rooted at u and a vertex v is in **T** if and only if $v \in \operatorname{rch}(u)$
- For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.

Generalizing ideas from undirected graphs:

- **1 DFS**(G) takes O(m + n) time.
- 2 Edges added form a *branching*: a forest of out-trees. Output of DFS(G) depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$
- For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.

Note: Not obvious whether DFS(G) is useful in dir graphs but it is.

DFS Tree

Edges of **G** can be classified with respect to the **DFS** tree **T** as:

- 1 Tree edges (x, y) that belong to T: pre(x) < pre(y) < post(y) < post(x).
- 2 A forward edge is a non-tree edges (x, y) such that pre(x) < pre(y) < post(y) < post(x).
- 3 A backward edge is a non-tree edge (x, y) such that pre(y) < pre(x) < post(x) < post(y).
- 4 A cross edge is a non-tree edges (x, y) such that pre(y) < post(y) < pre(x) < post(x).

DFS Tree

Edges of G can be classified with respect to the DFS tree T as:

- 1 Tree edges (x, y) that belong to T: pre(x) < pre(y) < |post(y)| < post(x).
- 2 A forward edge is a non-tree edges (x, y) such that pre(x) < pre(y) < post(y) < post(x).
- 3 A backward edge is a non-tree edge (x, y) such that pre(y) < pre(x) < post(x) < post(y).
- 4 A cross edge is a non-tree edges (x, y) such that pre(y) < post(y) < pre(x) < post(x).

Note what makes a backward edge special is post(x) < post(y).

DFS Tree

Edges of **G** can be classified with respect to the **DFS** tree **T** as:

- 1 Tree edges (x, y) that belong to T: pre(x) < pre(y) < post(y) < post(x).
- 2 A forward edge is a non-tree edges (x, y) such that pre(x) < pre(y) < post(y) < post(x).
- 3 A backward edge is a non-tree edge (x, y) such that pre(y) < pre(x) < post(x) < post(y).
- 4 A cross edge is a non-tree edges (x, y) such that pre(y) < post(y) < pre(x) < post(x).

Note what makes a backward edge special is post(x) < post(y). Also note both backward and cross edge have pre(y) < pre(x).

Types of Edges

Cycles in graphs

Question: Given an *undirected* graph how do we check whether it has a cycle and output one if it has one?

Question: Given an *directed* graph how do we check whether it has a cycle and output one if it has one?

(UIUC) CS/ECE 374 23 March 25, 2021 23 / 53

Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in DFS(G).

(UIUC) CS/ECE 374 24 March 25, 2021 24 / 53

Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in DFS(G).

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in **DFS** search tree and the edge (u, v).

(UIUC) CS/ECE 374 24 March 25, 2021 24 / 53

Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in DFS(G).

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in **DFS** search tree and the edge (u, v).

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k \rightarrow v_1$. Let v_i be first node in C visited in DFS.

All other nodes in C are descendants of v_i since they are reachable from v_i .

Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if i = 1) is a back edge.

An Edge in DAG

Proposition

If G is a DAG and post(u) < post(v), then (u, v) is not in G. i.e., for all edges (u, v) in a DAG, post(u) > post(v).

An Edge in DAG

Proposition

If G is a DAG and post(u) < post(v), then (u, v) is not in G. i.e., for all edges (u, v) in a DAG, post(u) > post(v).

Proof.

Assume post(u) < post(v) and (u, v) is an edge in G. We derive a contradiction. One of two cases holds from DFS property.

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)]. Implies that u is explored during DFS(v) and hence is a descendent of v. Edge (u, v) implies a cycle in G but G is assumed to be DAG!
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)]. This cannot happen since v would be explored from u.

(UIUC) CS/ECE 374 25 March 25, 2021 25 / 53

... to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort. Else output a cycle C.

(UIUC) CS/ECE 374 26 March 25, 2021 26 / 53

... to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort. Else output a cycle C.

DFS based algorithm:

- Compute DFS(G)
- 2 If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).

(UIUC) CS/ECE 374 26 March 25, 2021 26 / 53

... to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort. Else output a cycle C.

DFS based algorithm:

- Compute DFS(G)
- 2 If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order.

(UIUC) CS/ECE 374 26 March 25, 2021 26 / 53

... to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort. Else output a cycle C.

DFS based algorithm:

- Compute DFS(G)
- 2 If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- 3 Otherwise output nodes in decreasing post-visit order. Note: no need to sort, DFS(G) can output nodes in this order.

Algorithm runs in O(n + m) time.

Example

(UIUC) CS/ECE 374 27 March 25, 2021 27 / 53

Part IV

DAGs, DFS and SCC in Linear Time

(UIUC) CS/ECE 374 28 March 25, 2021 28 / 53

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

(UIUC) CS/ECE 374 29 March 25, 2021 29 / 53

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm:

```
Mark all vertices in V as not visited. 

for each vertex u \in V not visited yet do find \mathrm{SCC}(G,u) the strong component of u: Compute \mathrm{rch}(G,u) using \mathrm{DFS}(G,u) Compute \mathrm{rch}(G^{\mathrm{rev}},u) using \mathrm{DFS}(G^{\mathrm{rev}},u) \mathrm{SCC}(G,u) \Leftarrow \mathrm{rch}(G,u) \cap \mathrm{rch}(G^{\mathrm{rev}},u) \forall u \in \mathrm{SCC}(G,u): Mark u as visited.
```

Running time: O(n(n+m))

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Straightforward algorithm:

```
Mark all vertices in V as not visited. 

for each vertex u \in V not visited yet do find SCC(G, u) the strong component of u: Compute \operatorname{rch}(G, u) using DFS(G, u) Compute \operatorname{rch}(G^{\operatorname{rev}}, u) using DFS(G^{\operatorname{rev}}, u) SCC(G, u) \Leftarrow \operatorname{rch}(G, u) \cap \operatorname{rch}(G^{\operatorname{rev}}, u) \forall u \in SCC(G, u): Mark u as visited.
```

Running time: O(n(n + m))Is there an O(n + m) time algorithm?

Graph of SCCs

Graph G

30 / 53

Meta-graph of SCCs

Let $S_1, S_2, ..., S_k$ be the strong connected components (i.e., SCCs) of G. The graph of SCCs is G^{SCC}

- Vertices are $S_1, S_2, \ldots S_k$
- 2 There is an edge (S_i, S_j) if there is some $u \in S_i$ and $v \in S_j$ such that (u, v) is an edge in G.

Structure of a Directed Graph

Graph G

Graph of SCCs GSCC

Reminder

G^{SCC} is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.

(UIUC) CS/ECE 374 31 March 25, 2021 31 / 53

SCCs and DAGs

Proposition

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ should be in the same SCC in G. Formal details: exercise.

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- **1** Let \boldsymbol{u} be a vertex in a sink SCC of $\boldsymbol{\mathsf{G}}^{\mathrm{SCC}}$
- ② Do DFS(u) to compute SCC(u)
- 3 Remove SCC(u) and repeat

(UIUC) CS/ECE 374 33 March 25, 2021 33 / 53

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- **1** Let \boldsymbol{u} be a vertex in a *sink* SCC of $\boldsymbol{\mathsf{G}}^{\mathrm{SCC}}$
- ② Do DFS(u) to compute SCC(u)
- 3 Remove SCC(u) and repeat

Justification

1 DFS(u) only visits vertices (and edges) in SCC(u)

(UIUC) CS/ECE 374 33 March 25, 2021 33 / 53

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- **1** Let \boldsymbol{u} be a vertex in a *sink* SCC of $\boldsymbol{\mathsf{G}}^{\mathrm{SCC}}$
- ② Do DFS(u) to compute SCC(u)
- 3 Remove SCC(u) and repeat

Justification

- **1 DFS**(u) only visits vertices (and edges) in SCC(u)
- … since there are no edges coming out a sink!
- 3
- 4

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- **1** Let \boldsymbol{u} be a vertex in a *sink* SCC of $\boldsymbol{\mathsf{G}}^{\mathrm{SCC}}$
- ② Do DFS(u) to compute SCC(u)
- 3 Remove SCC(u) and repeat

Justification

- **1 DFS**(u) only visits vertices (and edges) in SCC(u)
- 2 ... since there are no edges coming out a sink!
- 3 DFS(u) takes time proportional to size of SCC(u)

4

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- **1** Let \boldsymbol{u} be a vertex in a *sink* SCC of $\boldsymbol{\mathsf{G}}^{\mathrm{SCC}}$
- ② Do DFS(u) to compute SCC(u)
- \odot Remove SCC(u) and repeat

Justification

- \bigcirc **DFS**(u) only visits vertices (and edges) in SCC(u)
- 2 ... since there are no edges coming out a sink!
- 3 DFS(u) takes time proportional to size of SCC(u)
- Therefore, total time O(n+m)!

(UIUC) CS/ECE 374 33 March 25, 2021 33 / 53

How do we find a vertex in a sink SCC of G^{SCC} ?

(UIUC) CS/ECE 374 34 March 25, 2021 34 / 53

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an *implicit* topological sort of $G^{\rm SCC}$ without computing $G^{\rm SCC}$?

(UIUC) CS/ECE 374 34 March 25, 2021 34 / 53

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an *implicit* topological sort of $G^{\rm SCC}$ without computing $G^{\rm SCC}$?

There is no easy way to find a node in a sink SCC, but there is a way to find a node in a source SCC.

(UIUC) CS/ECE 374 34 March 25, 2021 34 / 53

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an *implicit* topological sort of $G^{\rm SCC}$ without computing $G^{\rm SCC}$?

There is no easy way to find a node in a sink SCC, but there is a way to find a node in a source SCC.

Then we can find a node in the source SCC of the the reversal of G^{SCC} !

Reversal and SCCs

Proposition

For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC} .

Proof.

The SCCs of G^{rev} are the same as those of G. Formal proof as exercise.

Proposition

If **C** and **C'** are SCC, and there is an edge from a node in **C** to a node in **C'**, then the highest post number in **C** is bigger than the highest post number in **C'**.

Proposition

If C and C' are SCC, and there is an edge from a node in C to a node in C', then the highest post number in C is bigger than the highest post number in C'.

Proof

Consider two cases.

Case 1: DFS visits C first.

Proposition

If C and C' are SCC, and there is an edge from a node in C to a node in C', then the highest post number in C is bigger than the highest post number in C'.

Proof

Consider two cases.

Case 1: DFS visits C first. then all the vertices will be traversed. The first node visited in C will have the highest post number.

Proposition

If C and C' are SCC, and there is an edge from a node in C to a node in C', then the highest post number in C is bigger than the highest post number in C'.

Proof

Consider two cases.

- Case 1: DFS visits C first. then all the vertices will be traversed. The first node visited in C will have the highest post number.
- Case 2: DFS visits C' first.

Proposition

If C and C' are SCC, and there is an edge from a node in C to a node in C', then the highest post number in C is bigger than the highest post number in C'.

Proof

Consider two cases.

$$\subset \longrightarrow \subset'$$

- Case 1: DFS visits C first. then all the vertices will be traversed. The first node visited in C will have the highest post number.
- Case 2: DFS visits C' first. then DFS will stop after visiting all nodes in C' but before seeing any of C.

March 25, 2021

Proposition

The node that receives the highest post number in DFS must lie in a source SCC.

(UIUC) CS/ECE 374 37 March 25, 2021 37 / 53

Proposition

The node that receives the highest post number in DFS must lie in a source SCC.

In other words, the SCCs are topologically sorted by arranging them in decreasing order of their highest post number.

Proposition

The node that receives the highest post number in DFS must lie in a source SCC.

In other words, the SCCs are topologically sorted by arranging them in decreasing order of their highest post number.

A generalization of topological sort for DAGs.

Linear Time Algorithm

...for computing the strong connected components in G

```
do \mathsf{DFS}(G^{\mathsf{rev}}) and output vertices in decreasing post order. Mark all nodes as unvisited for each u in the computed order do if u is not visited then \mathsf{DFS}(u)
Let S_u be the nodes reached by u
Output S_u as a strong connected component Remove S_u from \mathsf{G}
```

Theorem

Algorithm runs in time O(m+n) and correctly outputs all the SCCs of G.

(UIUC) CS/ECE 374 38 March 25, 2021 38 / 53

Linear Time Algorithm: An Example - Initial steps

Graph G:

Reverse graph Grev:

DFS of reverse graph:

Pre/Post **DFS** numbering of reverse graph:

March 25, 2021

39 / 53

(UIUC) CS/ECE 374 39

Removing connected components: 1

Original graph G with rev post numbers:

Do **DFS** from vertex G remove it.

SCC computed:

{*G*}

Removing connected components: 2

Do **DFS** from vertex G remove it.

Do **DFS** from vertex H, remove it.

41 / 53

SCC computed:

{*G*}

SCC computed:

$$\{G\}, \{H\}$$

Removing connected components: 3

Do **DFS** from vertex **H**, remove it.

Do **DFS** from vertex **B** Remove visited vertices:

$$\{F,B,E\}$$
.

$$\{G\},\{H\}$$

$$\{G\}, \{H\}, \{F, B, E\}$$

42 / 53

Removing connected components: 4

Do **DFS** from vertex **F** Remove visited vertices:

SCC computed: { *G* }, { *H* }, { *F* , *B* , *E* }

Do **DFS** from vertex **A** Remove visited vertices:

SCC computed: {*G*}, {*H*}, {*F*, *B*, *E*}, {*A*, *C*, *D*}

(UIUC) CS/ECE 374 43 March 25, 2021 43 / 53

Final result

SCC computed:

$$\{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}$$

Which is the correct answer!

(UIUC) CS/ECE 374 44 March 25, 2021 44 / 53

Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

- Is the problem solvable when G is strongly connected?
- Is the problem solvable when G is a DAG?
- If the above two are feasible then is the problem solvable in a general directed graph G by considering the meta graph G^{SCC} ?

(UIUC) CS/ECE 374 45 March 25, 2021 45 / 53

Take away Points

- ① Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G that should be kept in mind.
- 2 There is a **DFS** based linear time algorithm to compute all the SCCs and the meta-graph. Properties of **DFS** crucial for the algorithm.
- DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).