CS/ECE 374: Algorithms & Models of
Computation

DAGs, DFS and SCC

Lecture 17

CS/ECE 374 1 March 25, 2021 1/53



Part |

Directed Acyclic Graphs

CS/ECE 374 March 25, 2021 2/53



DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

A directed graph G can be topologically ordered iff it is a DAG.

CS/ECE 374 March 25, 2021 3/53




Topological Ordering/Sorting
(O—0—06)—=®

Topological Ordering of G

Definition

A topological ordering/topological sorting of G = (V, E) is an
ordering < on V such that if (u, v) € E then u < v.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis)
such that all edges are from left to right.

CS/ECE 374 March 25, 2021 4 /53



DAGs and Topological Sort

What does it mean?

CS/ECE 374 March 25, 2021 5/53



DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

CS/ECE 374 March 25, 2021 5/53



DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza — eat the pizza, have a Coke.

CS/ECE 374 March 25, 2021 5/53



DAGs and Topological Sort

What does it mean?

Consider a dependency graph.

Topological ordering

Find an order of events in which all dependencies are satisfied.

Case 1: DAG. Heat a pizza — eat the pizza, have a Coke.

Case 2: Circular dependence. L/h
AN
Y T Y

|
N |

CS/ECE 374 March 25, 2021 5/53



DAGs and Topological Sort
A directed graph G can be topologically ordered only if it is a DAG. \

Suppose G is not a DAG and has a topological ordering <. G has a
cycle C = tq, Uy, ..., Uk, Uy.

Then iy < up < ... < U < !

That is... u; < uq.

A contradiction (to < being an order).

Not possible to topologically order the vertices. []

CS/ECE 374 March 25, 2021 6/53



DAGs and Topological Sort
A directed graph G can be topologically ordered if it is a DAG. \

Consider the following algorithm:

Q@ Pick a source u, output it.
© Remove u and all edges out of u.

© Repeat until graph is empty.

Exercise: prove this gives toplogical sort. []

v

Exercise: show algorithm can be implemented in O(m + n) time.

CS/ECE 374 March 25, 2021 7/53



a0 @




DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the largest number of distinct
topological sorts for a given number n of vertices? Nl

Question: What is a DAG with the smallest number of distinct
topological sorts for a given number n of vertices? [

| -5 L >R —9 .. (L

CS/ECE 374 March 25, 2021 9/53




Part |l

DES in Undirected Graphs

CS/ECE 374 March 25, 2021 10/53



DFES in Undirected Graphs

Recursive version. Easier to understand some properties.

DFS(G) DFS (u)

for a11 v € V(G) do Mark u as visited
Mark u as unvisited for each wv in Adj(u) do
Set pred(u) to null if v is not visited then

T is set to 0 add edge uv to T

while 3 unvisited u do set pred(v) to u
DFS(u) DFS(v)

Output T

Implemented using a global array Visited for all recursive calls.
T is the search tree/forest.

CS/ECE 374 March 25, 2021 11 /53



ONENGNO ! A
7N / |
OS==0
e‘!‘e@ ,1 [0
O S ~_
) ]
A NN

Edges classified into two types: uv € E is a
O tree edge: belongsto T
© non-tree edge: does not belong to T

CS/ECE 374 March 25, 2021 12 /53



Properties of DF'S tree

©Q T isa forest

© connected components of T are same as those of G.

© /fuv € E is a non-tree edge then, in T, either:

@ u is an ancestor of v, or
@ Vv is an ancestor of u.

Question: Why are there no cross-edges?

CS/ECE 374 March 25, 2021 13/53



DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)

for all v € V(G) do
Mark u as unvisited

T is set to 0

time = 0

while Junvisited u do
DFS(u)

OQutput T

DFS (u)

Mark u as visited
pre(u) = ++time
for each uv in Out(u) do
if v is not marked then
add edge uv to T
DFS(v)
post(u) = ++time

CS/ECE 374

March 25, 2021

14 /53



Q0O S 209
I
(2f—] / \
oA ‘e@ H15 2

18,1910
© zm—g/
7\
49 ¢ 7 1o, 13
/NN

WA L 613 D2

CS/ECE 374 15 March 25, 2021 15 /53



pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

CS/ECE 374 March 25, 2021 16 /53



pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

CS/ECE 374 March 25, 2021 16 /53



pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

@ Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.

CS/ECE 374 March 25, 2021 16 /53



pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

@ Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.

e If DFS(v) invoked before DFS(u) finished, L‘A
post(v) < post(u). Al

CS/ECE 374 March 25, 2021 16 /53



pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

@ Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.

e If DFS(v) invoked before DFS(u) finished, LU’ vV, V, M:l
post(v) < post(u).
o If DFS(v) invoked after DFS(u) finished, pre(v) > post(uh

Cu,u]l LCv,v]

CS/ECE 374 March 25, 2021 16 /53



pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

@ Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.

o If DFS(v) invoked before DFS(u) finished,
post(v) < post(u).
o If DFS(v) invoked after DFS(u) finished, pre(v) > post(uh

pre and post numbers useful in several applications of DFS

CS/ECE 374 March 25, 2021 16 /53



Part Il

DES in Directed Graphs

CS/ECE 374 March 25, 2021 17 /53



DE'S in Directed Graphs

DFS(G)
Mark all nodes u as unvisited
T is set to 0
time = 0
while there is an unvisited node u do
DFS(u)
Output T

DFS(u)

Mark u as visited

pre(u) = ++time

for each edge (u,v) in Out(u) do

if v is not visited

add edge (u,v) to T
DFS(v)

post(u) = ++time

CS/ECE 374 March 25, 2021 18 /53






DFS Properties

Generalizing ideas from undirected graphs:

@ DFS(G) takes O(m + n) time.

CS/ECE 374 March 25, 2021 20/53



DFS Properties

Generalizing ideas from undirected graphs:
@ DFS(G) takes O(m + n) time.

© Edges added form a branching: a forest of out-trees. Output of
DFS(G) depends on the order in which vertices are considered.

CS/ECE 374 March 25, 2021 20/53



DFS Properties

Generalizing ideas from undirected graphs:
@ DFS(G) takes O(m + n) time.
© Edges added form a branching: a forest of out-trees. Output of
DFS(G) depends on the order in which vertices are considered.

@ If u is the first vertex considered by DFS(G) then DFS(u)
outputs a directed out-tree T rooted at u and a vertex v is in

T if and only if v € rch(u)

CS/ECE 374 March 25, 2021 20/53



DFS Properties

Generalizing ideas from undirected graphs:
@ DFS(G) takes O(m + n) time.

© Edges added form a branching: a forest of out-trees. Output of
DFS(G) depends on the order in which vertices are considered.

@ If u is the first vertex considered by DFS(G) then DFS(u)
outputs a directed out-tree T rooted at u and a vertex v is in

T if and only if v € rch(u)

© For any two vertices x, y the intervals [pre(x), post(x)] and
[pre(y), post(y)] are either disjoint or one is contained in the
other.

CS/ECE 374 March 25, 2021 20/53



DFS Properties

Generalizing ideas from undirected graphs:
@ DFS(G) takes O(m + n) time.
© Edges added form a branching: a forest of out-trees. Output of
DFS(G) depends on the order in which vertices are considered.

@ If u is the first vertex considered by DFS(G) then DFS(u)
outputs a directed out-tree T rooted at u and a vertex v is in

T if and only if v € rch(u)

© For any two vertices x, y the intervals [pre(x), post(x)] and
[pre(y), post(y)] are either disjoint or one is contained in the
other.

Note: Not obvious whether DFS(G) is useful in dir graphs but it is.

CS/ECE 374 March 25, 2021 20/53



DFES Tree

Edges of G can be classified with respect to the DFS tree T as:

© Tree edges (x, y) that belong to T:
pre(x) < pre(y) < post(y) < post(x).£

@ A forward edge is a non-tree edges (x, y) such that
pre(x) < pre(y) < post(y) < post(x). 2

© A backward edge is a non-tree edge (x, y) such that
pre(y) < pre(x) < post(x) < post(y).

O A cross edge is a non-tree edges (x, y) such that
pre(y) < post(y) < pre(x) < post(x).

CS/ECE 374 March 25, 2021



DFES Tree

Edges of G can be classified with respect to the DFS tree T as:

@ Tree edges (x, y) that belong to T

pre(x) < pre(y) <
Q@ A forward edge is a
pre(x) < pre(y) <
© A backward edge is
pre(y) < pre(x) <
@ A cross edge is a no
pre(y) < post(y)

post(y) < post(x).

non-tree edges (x, y) such that
post(y) < post(x).

2 non-tree edge (x, y) such that
post(x) < post(y).

-tree edges (x, y) such| that
pre(x) < post(x).

Note what makes a backward edge special is post(x) < post(y).

CS/ECE 374 March 25, 2021 21 /53



DFES Tree

Edges of G can be classified with respect to the DFS tree T as:

© Tree edges (x, y) that belong to T:
pre(x) < pre(y) < post(y) < post(x).

@ A forward edge is a non-tree edges (x, y) such that
pre(x) < pre(y) < post(y) < post(x).

© A backward edge is a non-tree edge (x, y) such that
pre(y) < pre(x) < post(x) < post(y).

O A cross edge is a non-tree edges (x, y) such that
pre(y) < post(y) < pre(x) < post(x).

Note what makes a backward edge special is post(x) < post(y).
Also note both backward and cross edge have pre(y) < pre(x).

CS/ECE 374 March 25, 2021 21 /53



Types of Edges

/ \
/

CS/ECE 374 March 25, 2021 22 /53



Cycles in graphs

Question: Given an undirected graph how do we check whether it
has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has
a cycle and output one if it has one?

CS/ECE 374 March 25, 2021 23 /53



Back edge and Cycles

Proposition
G has a cycle iff there is a back-edge in DFS(G).

CS/ECE 374 March 25, 2021 24 /53



Back edge and Cycles
Proposition
G has a cycle iff there is a back-edge in DFS(G).

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the
path from v to u in DFS search tree and the edge (u, v).

CS/ECE 374 March 25, 2021 24 /53



Back edge and Cycles
Proposition
G has a cycle iff there is a back-edge in DFS(G).

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the
path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose thereisacycle C =v; — vo — ... — v — .
Let v; be first node in C visited in DFS.
All other nodes in C are descendants of v; since they are reachable

from v;.
Therefore, (vi_1, v;) (or (vk, v1) if i = 1) is a back edge. O]

v

CS/ECE 374 March 25, 2021 24 /53



An Edge in DAG

Proposition

If Gis a DAG and post(u) < post(v), then (u, v) is not in G.
i.e., for all edges (u,v) in a DAG, post(u) > post(v).

U < v

CS/ECE 374 March 25, 2021 25 /53



An Edge in DAG

Proposition

If G is a DAG and post(u) < post(v), then (u,v) is not in G.
i.e., for all edges (u,v) in a DAG, post(u) > post(v).

Assume post(u) < post(v) and (u, v) is an edge in G. We derive
a contradiction. One of two cases holds from DFS property.

o Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
Implies that u is explored during DFS(v) and hence is a
descendent of v. Edge (u, v) implies a cycle in G but G is
assumed to be DAG!

o Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].
This cannot happen since v would be explored from w.

[ ]

CS/ECE 374 March 25, 2021 25 /53




Using DF'S...

... to check for Acylicity and compute Topological Ordering

Given G, is it a DAG? If it is, generate a topological sort. Else
output a cycle C.

CS/ECE 374 March 25, 2021 26 /53



Using DF'S...

... to check for Acylicity and compute Topological Ordering

Given G, is it a DAG? If it is, generate a topological sort. Else
output a cycle C.

DFS based algorithm:
@ Compute DFS(G)

@ |If there is a back edge e = (v, u) then G is not a DAG. Output
cycle C formed by path from u to v in T plus edge (v, u).

CS/ECE 374 March 25, 2021 26 /53



Using DF'S...

... to check for Acylicity and compute Topological Ordering

Given G, is it a DAG? If it is, generate a topological sort. Else
output a cycle C.

DFS based algorithm:
@ Compute DFS(G)

@ |If there is a back edge e = (v, u) then G is not a DAG. Output
cycle C formed by path from u to v in T plus edge (v, u).

© Otherwise output nodes in decreasing post-visit order.

CS/ECE 374 March 25, 2021 26 /53



Using DF'S...

... to check for Acylicity and compute Topological Ordering

Given G, is it a DAG? If it is, generate a topological sort. Else
output a cycle C.

DFS based algorithm:
@ Compute DFS(G)

@ If there is a back edge e = (v, u) then G is not a DAG. Output
cycle C formed by path from u to v in T plus edge (v, u).

© Otherwise output nodes in decreasing post-visit order.
Note: no need to sort, DFS(G) can output nodes in this order.

Algorithm runs in O(n + m) time.

CS/ECE 374 March 25, 2021 26 /53






Part |V

DAGs, DFS and SCC in Linear Time

CS/ECE 374 28 March 25, 2021 28 /53



Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V/, E), output all its strong connected
components.

CS/ECE 374 March 25, 2021 29 /53



Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V/, E), output all its strong connected
components.

Straightforward algorithm:

Mark all vertices in V as not visited.
for each vertex u € V not visited yet do
find SCC(G, u) the strong component of u:
Compute rch(G, u) using DFS(G, u)
Compute rch(G*®Y, u) using DFS(G™®V, u)
SCC(G, u) <= rch(G, u) Nrch(G*Y, u)
Yu € SCC(G,u): Mark u as visited.

Running time: O(n(n + m)) /2 3 ¢ S
O—yo—>0 —rov— D

CS/ECE 374 March 25, 2021 29 /53



Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V/, E), output all its strong connected
components.

Straightforward algorithm:

Mark all vertices in V as not visited.
for each vertex u € V not visited yet do
find SCC(G, u) the strong component of u:
Compute rch(G, u) using DFS(G, u)
Compute rch(G*®V,u) using DFS(G™®V, u)
SCC(G, u) <= rch(G, u) Nrch(G*Y, u)
Yu € SCC(G,u): Mark u as visited.

Running time: O(n(n + m))
Is there an O(n + m) time algorithm?

CS/ECE 374 March 25, 2021 29 /53



Graph of SCCs

(B—(a—(<)
@\ B,E,Fk A,C,D

e‘o 0 | \ |

(6) (H) G i« H
Graph of SCCs G>“¢

Graph G

Meta-graph of SCCs

Let S1, Sy, . .. Sk be the strong connected components (i.e., SCCs)
of G. The graph of SCCs is G°“©

© \Vertices are 51, 5,,...5,

@ There is an edge (S;, Sj) if there is some u € S; and v € §;
such that (u, v) is an edge in G.

CS/ECE 374 March 25, 2021 30/53



Structure of a Directed Graph
(B —(<)

B,E,F | A, C,D

~_]

G H

Graph of SCCs G°“°

Reminder
GSCC

is created by collapsing every strong connected component to a
single vertex.

Proposition
For a directed graph G, its meta-graph G°°C is a DAG.

CS/ECE 374 March 25, 2021 31/53



SCCs and DAGs

Proposition
For any graph G, the graph G°““ has no directed cycle.

If G°“C has a cycle $1,S5,...,Sk then S U S, U - - - U S should
be in the same SCC in G. Formal details: exercise. []

CS/ECE 374 March 25, 2021 32 /53



Linear-time Algorithm for SCCs: ldeas

Exploit structure of meta-graph...

Wishful Thinking Algorithm
@ Let u be a vertex in a sink SCC of G

@ Do DFS(u) to compute SCC(u)
@ Remove SCC(u) and repeat

CS/ECE 374 March 25, 2021 33/53



Linear-time Algorithm for SCCs: ldeas

Exploit structure of meta-graph...

Wishful Thinking Algorithm

@ Let u be a vertex in a sink SCC of G>©
@ Do DFS(u) to compute SCC(u)
© Remove SCC(u) and repeat

Justification
@ DFS(u) only visits vertices (and edges) in SCC(u)

| \

CS/ECE 374 March 25, 2021 33/53



Linear-time Algorithm for SCCs: ldeas

Exploit structure of meta-graph...

Wishful Thinking Algorithm

@ Let u be a vertex in a sink SCC of G>©
@ Do DFS(u) to compute SCC(u)
© Remove SCC(u) and repeat

Justification
@ DFS(u) only visits vertices (and edges) in SCC(u)
© ... since there are no edges coming out a sink!
(S
o

| \

CS/ECE 374 March 25, 2021 33/53



Linear-time Algorithm for SCCs: ldeas

Exploit structure of meta-graph...

Wishful Thinking Algorithm

@ Let u be a vertex in a sink SCC of G>©
@ Do DFS(u) to compute SCC(u)
© Remove SCC(u) and repeat

Justification
@ DFS(u) only visits vertices (and edges) in SCC(u)
© ... since there are no edges coming out a sink!
© DFS(u) takes time proportional to size of SCC(u)
o

| \

CS/ECE 374 March 25, 2021 33/53



Linear-time Algorithm for SCCs: ldeas

Exploit structure of meta-graph...

Wishful Thinking Algorithm

@ Let u be a vertex in a sink SCC of G°“¢
@ Do DFS(u) to compute SCC(u)
© Remove SCC(u) and repeat

Justification
@ DFS(u) only visits vertices (and edges) in SCC(u)
© ... since there are no edges coming out a sink!
© DFS(u) takes time proportional to size of SCC(u)
© Therefore, total time O(n 4+ m)!

| \

CS/ECE 374 March 25, 2021 33/53



Big Challenge(s)

How do we find a vertex in a sink SCC of G°¢¢? ]

CS/ECE 374 March 25, 2021 34 /53



Big Challenge(s)

How do we find a vertex in a sink SCC of G°¢¢? ]
Can we obtain an implicit topological sort of G°“ without
computing G°¢“?

CS/ECE 374 March 25, 2021 34 /53



Big Challenge(s)

How do we find a vertex in a sink SCC of G°¢¢? ]
Can we obtain an implicit topological sort of G°“ without
computing G°¢“?

There is no easy way to find a node in a sink SCC, but there is a
way to find a node in a source SCC.

CS/ECE 374 March 25, 2021 34 /53



Big Challenge(s)

How do we find a vertex in a sink SCC of G°¢¢? ]
Can we obtain an implicit topological sort of G°“ without
computing G°¢“?

There is no easy way to find a node in a sink SCC, but there is a
way to find a node in a source SCC.

Then we can find a node in the source SCC of the the reversal of
GSCC)

CS/ECE 374 March 25, 2021 34 /53



Reversal and SCCs

Proposition

For any graph G, the graph of SCCs of G*®V is the same as the
reversal of G°°°.

The SCCs of G are the same as those of G. Formal proof as
exercise. ]

CS/ECE 374 March 25, 2021 35/53



How to linearize SCCs

If C and C" are SCC, and there is an edge from a node in C to a
node in C’, then the highest post number in C is bigger than the
highest post number in C’.

C

}

C,/

CS/ECE 374 March 25, 2021 36 /53



How to linearize SCCs

If C and C" are SCC, and there is an edge from a node in C to a
node in C’, then the highest post number in C is bigger than the
highest post number in C’.

Consider two cases.
@ Case 1: DFS visits C first.

CS/ECE 374 March 25, 2021 36 /53



How to linearize SCCs

If C and C" are SCC, and there is an edge from a node in C to a
node in C’, then the highest post number in C is bigger than the
highest post number in C’.

Consider two cases.

@ Case 1: DFS visits C first.
then all the vertices will be traversed. The first node visited in
C will have the highest post number.

CS/ECE 374 March 25, 2021 36 /53



How to linearize SCCs

If C and C" are SCC, and there is an edge from a node in C to a
node in C’, then the highest post number in C is bigger than the
highest post number in C’.

Consider two cases.

@ Case 1: DFS visits C first.
then all the vertices will be traversed. The first node visited in
C will have the highest post number.

@ Case 2: DFS visits C’ first. C ! < C

CS/ECE 374 March 25, 2021 36 /53



How to linearize SCCs

If C and C" are SCC, and there is an edge from a node in C to a
node in C’, then the highest post number in C is bigger than the
highest post number in C’.

Consider two cases. C S C /

@ Case 1: DFS visits C first.
then all the vertices will be traversed. The first node visited in
C will have the highest post number.

@ Case 2: DFS visits C’ first.
then DFS will stop after visiting all nodes in C’ but before
seeing any of C.

CS/ECE 374 March 25, 2021 36 /53



How to linearize SCCs

Proposition

The node that receives the highest post number in DFS must lie in a
source SCC.

CS/ECE 374 March 25, 2021 37 /53



How to linearize SCCs

Proposition

The node that receives the highest post number in DFS must lie in a
source SCC.

In other words, the SCCs are topologically sorted by arranging them
in decreasing order of their highest post number.

CS/ECE 374 March 25, 2021 37 /53



How to linearize SCCs

Proposition

The node that receives the highest post number in DFS must lie in a
source SCC.

In other words, the SCCs are topologically sorted by arranging them
in decreasing order of their highest post number.

A generalization of topological sort for DAGs.

CS/ECE 374 March 25, 2021 37 /53



Linear Time Algorithm

...for computing the strong connected components in G

do DFS(G™®V) and output vertices in decreasing post order.
Mark all nodes as unvisited
for each u in the computed order do
if u is not visited then

DFS(u)

Let S, be the nodes reached by u

Output S, as a strong connected component

Remove S, from G

Algorithm runs in time O(m 4+ n) and correctly outputs all the SCCs
of G.

CS/ECE 374 March 25, 2021 38 /53



Linear Time Algorithm: An Example - Initial steps

Reverse graph G™®V:

Pre/Post DFS numbering

of reverse graph:
[1,6]

CS/ECE 374 March 25, 2021 39 /53



Linear Time Algorithm: An Example

Removing connected components: 1

. . Do DFS from vertex G
Original graph G with rev post emove it

numbers: 12

SCC computed:
{G}

CS/ECE 374 March 25, 2021



Linear Time Algorithm: An Example

Removing connected components: 2

Do DFS from vertex G Do DFS from vertex H,
remove it. remove It.
12 6 12 6
@ e
10 GG 11 @5
—
SCC computed: SCC computed:
{G} {G}, {H}

CS/ECE 374 March 25, 2021



Linear Time Algorithm: An Example

Removing connected components: 3

Do DFS from vertex B

Do DFS from vertex H, Remove visited vertices:

rerr11e it. - {F’B’E}'G
4
N \4
10E®E—®11 5
> 5

SCC computed:
{G},{H} SCC computed:

{G},{H},{F,B,E}

CS/ECE 374 March 25, 2021



Linear Time Algorithm: An Example

Removing connected components: 4

Do DFS from vertex F

Remove visited vertices:

{F, B, E}.6

~

(D)5

SCC computed:
{G},{H},{F,B,E}

Do DFS from vertex A
Remove visited vertices:

{A, C,DY.

SCC computed:
{G},{H},{F,B,E},{A,C,D}

CS/ECE 374 March 25, 2021 43 /53



Linear Time Algorithm: An Example

Final result

SCC computed:
{G},{H}.{F,B,E},{A,C,D}

Which is the correct answer!

CS/ECE 374 March 25, 2021 44 /53



Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:
@ Is the problem solvable when G is strongly connected?
@ Is the problem solvable when G is a DAG?

@ If the above two are feasible then is the problem solvable in a
general directed graph G by considering the meta graph G“¢?

CS/ECE 374 March 25, 2021 45 /53



Take away Points

©Q Given a directed graph G, its SCCs and the associated acyclic

meta-graph G°“C give a structural decomposition of G that
should be kept in mind.

There is a DFS based linear time algorithm to compute all the
SCCs and the meta-graph. Properties of DFS crucial for the
algorithm.

DAGs arise in many application and topological sort is a key
property in algorithm design. Linear time algorithms to compute
a topological sort (there can be many possible orderings so not
unique).

CS/ECE 374 March 25, 2021 53 /53





