Directed Graph, DAGs and Topological Sort

Lecture 16
Part I

Connectivity on Undirected Graphs
Algorithmic Problems

1. Given graph G and nodes u and v, is u connected to v?
2. Given G and node u, find all nodes that are connected to u.
3. Find all connected components of G.

Can be accomplished in $O(m + n)$ time using BFS or DFS.

BFS and DFS are refinements of a basic search procedure which is good to understand on its own.
Given $G = (V, E)$ and vertex $u \in V$. Let $n = |V|$.

Explore(G, u):

- array $Visited[1..n]$
- Initialize: Set $Visited[i] = FALSE$ for $1 \leq i \leq n$
- List: $ToExplore$, S
- Add u to $ToExplore$ and to S, $Visited[u] = TRUE$

while ($ToExplore$ is non-empty) do
 Remove node x from $ToExplore$ \(\leftarrow O(1)\)
 for each edge (x, y) in $Adj(x)$ do
 if ($Visited[y] == FALSE$) \(\leftarrow O(1)\)
 $Visited[y] = TRUE$
 Add y to $ToExplore$ \(\leftarrow O(1)\)
 Add y to S

Output S
Example

The set of connected components of a graph is the set of vertex sets $\{u \in V\}$. The connected components in the above graph are $\{1, 2, 3, 4, 5, 6, 7, 8\}$ and $\{9, 10\}$.

A graph is said to be connected when it has exactly one connected component. In other words, every pair of vertices in the graph are connected.
Proposition

Explore(G, u) terminates with $S = \text{con}(u)$.

Proof Sketch.

Once Visited$[i]$ is set to TRUE it never changes. Hence a node is added only once to ToExplore. Thus algorithm terminates in at most n iterations of while loop.

If $v \in \text{con}(u)$, then $v \in S$.

If $v / \in \text{con}(u)$, then $v / \in S$.

Thus $S = \text{con}(u)$ at termination.
Proposition

\[
\text{Explore}(G, u) \text{ terminates with } S = con(u).
\]

Proof Sketch.

- Once \textit{Visited}[i] is set to \textit{TRUE} it never changes. Hence a node is added only once to \textit{ToExplore}. Thus algorithm terminates in at most \textit{n} iterations of while loop.
Properties of Basic Search

Proposition

\textbf{Explore}(G, u) \textit{ terminates with } S = \text{con}(u).

Proof Sketch.

- Once \textit{Visited}[i] is set to \textit{TRUE} it never changes. Hence a node is added only once to \textit{ToExplore}. Thus algorithm terminates in at most \textit{n} iterations of while loop.

- If \(v \in \text{con}(u) \), then \(v \in S \).

- If \(v \notin \text{con}(u) \), then \(v \notin S \).

- Thus \(S = \text{con}(u) \) at termination.
Properties of Basic Search

Depth First Search (DFS): use stack data structure to implement the list ToExplore

\[
\text{RECURSIVEDFS}(v): \\
\text{if } v \text{ is unmarked} \\
mark v \\
\text{for each edge } vw \\
\text{RECURSIVEDFS}(w)
\]

\[
\text{ITERATIVEDFS}(s): \\
\text{Push}(s) \\
\text{while the stack is not empty} \\
\begin{align*}
\text{Push}(w) \\
\text{if } v \text{ is unmarked} \\
\text{mark } v \\
\text{for each edge } vw \\
\text{Pop} \\
\end{align*}
\]
Properties of Basic Search

DFS and BFS are special case of BasicSearch.

1. Depth First Search (DFS): use stack data structure to implement the list ToExplore.

2. Breadth First Search (BFS): use queue data structure to implementing the list ToExplore.
One can create a natural search tree \(T \) rooted at \(u \) during search.

\[
\text{Explore}(G, u):
\]

- array \(\text{Visited}[1..n] \)
- Initialize: Set \(\text{Visited}[i] = \text{FALSE} \) for \(1 \leq i \leq n \)
- List: \(\text{ToExplore}, S \)
- Add \(u \) to \(\text{ToExplore} \) and to \(S \), \(\text{Visited}[u] = \text{TRUE} \)
- Make tree \(T \) with root as \(u \)

\[\begin{align*}
\text{while} & \ (\text{ToExplore} \text{ is non-empty}) \ do \\
& \text{Remove node } x \text{ from } \text{ToExplore} \\
& \text{for each edge } (x, y) \text{ in } \text{Adj}(x) \text{ do} \\
& \quad \text{if } (\text{Visited}[y] == \text{FALSE}) \\
& \quad \quad \text{Visited}[y] = \text{TRUE} \\
& \quad \quad \text{Add } y \text{ to } \text{ToExplore} \\
& \quad \quad \text{Add } y \text{ to } S \\
& \quad \quad \text{Add } y \text{ to } T \text{ with } x \text{ as its parent} \\
\end{align*}\]

Output \(S \)

\(T \) is a spanning tree of \(\text{con}(u) \) rooted at \(u \)
Spanning tree

A depth-first and breadth-first spanning tree.
Finding all connected components

Exercise: Modify Basic Search to find all connected components of a given graph G in $O(m + n)$ time.

1 connected component $O(m + n)$
Part II

Directed Graphs
Directed Graphs

Definition

A directed graph $G = (V, E)$ consists of

1. set of vertices/nodes V

and

2. a set of edges/arcs $E \subseteq V \times V$.

An edge is an *ordered* pair of vertices. (u, v) different from (v, u).
Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:

1. Road networks with one-way streets.

2. Web-link graph: vertices are web-pages and there is an edge from page p to page p' if p has a link to p'. Web graphs used by Google with PageRank algorithm to rank pages.

3. Dependency graphs in variety of applications: link from x to y if y depends on x. Make files for compiling programs.

4. Program Analysis: functions/procedures are vertices and there is an edge from x to y if x calls y.
Directed Graph Representation

Graph $G = (V, E)$ with n vertices and m edges:

2. **Adjacency Lists**: for each node u, $Out(u)$ (also referred to as $Adj(u)$) and $In(u)$ store out-going edges and in-coming edges from u.

Default representation is adjacency lists.

$$
\begin{align*}
\text{undirected} & : \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\
\text{directed} & : \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}
\end{align*}
$$
Concrete representation discussed previously for undirected graphs easily extends to directed graphs.

Array of edges E

```
|   | ---- | e_j | ---- |
```

Information including end point indices

Array of adjacency lists

```
  v_i
  ...
  ...
```

List of edges (indices) that are incident to v_i
Directed Connectivity

Given a graph $G = (V, E)$:

A **(directed) path** is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k - 1$. The length of the path is $k - 1$ and the path is from v_1 to v_k. By convention, a single node u is a path of length 0.
Directed Connectivity

Given a graph \(G = (V, E) \):

![Graph Diagram]

A vertex \(u \) can reach \(v \) if there is a path from \(u \) to \(v \).
Directed Connectivity

Given a graph $G = (V, E)$:

A vertex u can reach v if there is a path from u to v.

Let $\text{rch}(u)$ be the set of all vertices reachable from u.
Directed Connectivity

Asymmetricity: D can reach B but B cannot reach D

\begin{center}
\begin{tikzpicture}
 \node [circle, draw] (A) at (0,0) {A};
 \node [circle, draw] (B) at (-2,-1) {B};
 \node [circle, draw] (C) at (2,-1) {C};
 \node [circle, draw] (D) at (2,1) {D};
 \node [circle, draw] (E) at (-2,1) {E};
 \node [circle, draw] (F) at (0,1) {F};
 \node [circle, draw] (G) at (0,-1) {G};
 \node [circle, draw] (H) at (2,-3) {H};

 \draw [->] (B) -- (A);
 \draw [->] (B) -- (E);
 \draw [->] (B) -- (G);
 \draw [->] (A) -- (C);
 \draw [->] (A) -- (F);
 \draw [->] (A) -- (H);
 \draw [->] (D) -- (C);
 \draw [->] (D) -- (E);
 \draw [->] (D) -- (F);
 \draw [->] (D) -- (G);
 \draw [->] (F) -- (H);
\end{tikzpicture}
\end{center}
Directed Connectivity

Asymmetricity: \(D \) can reach \(B \) but \(B \) cannot reach \(D \)

Questions:
1. Is there a notion of connected components?
2. How do we understand connectivity in directed graphs?
Definition

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in \text{rch}(u)$ and $u \in \text{rch}(v)$.
Definition

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in \text{rch}(u)$ and $u \in \text{rch}(v)$.

Define relation C where uCv if u is (strongly) connected to v.
Connectivity and Strong Connected Components

Definition

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in \text{rch}(u)$ and $u \in \text{rch}(v)$.

Define relation C where uCv if u is (strongly) connected to v.

Proposition

C is an equivalence relation, that is reflexive, symmetric and transitive.
Connectivity and Strong Connected Components

Definition

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in rch(u)$ and $u \in rch(v)$.

Define relation C where uCv if u is (strongly) connected to v.

Proposition

C is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of C: strong connected components of G. They partition the vertices of G.

$SCC(u)$: strongly connected component containing u.
Strongly Connected Components: Example

A directed graph (also called a digraph) is \(G = (V, E) \), where \(V \) is a set of vertices or nodes and \(E \) is a set of ordered pairs of vertices called edges.
1. Given G and nodes u and v, can u reach v?
2. Given G and u, compute $rch(u)$.
3. Given G and u, compute all v that can reach u, that is all v such that $u \in rch(v)$.
4. Find the strongly connected component containing node u, that is $SCC(u)$.
5. Is G strongly connected (a single strong component)?
6. Compute all strongly connected components of G.
Basic Graph Search in Directed Graphs

Given $G = (V, E)$ a directed graph and vertex $u \in V$. Let $n = |V|$.

Explore(G, u):

array $Visited[1..n]$

Initialize: Set $Visited[i] = FALSE$ for $1 \leq i \leq n$

List: $ToExplore, S$

Add u to $ToExplore$ and to S, $Visited[u] = TRUE$

Make tree T with root as u

while ($ToExplore$ is non-empty) do

Remove node x from $ToExplore$

for each edge (x, y) in $Adj(x)$ do

if ($Visited[y] == FALSE$)

$Visited[y] = TRUE$

Add y to $ToExplore$

Add y to S

Add y to T with edge (x, y)

Output S
Properties of Basic Search

Proposition

\(\text{Explore}(G, u) \) terminates with \(S = rch(u) \).
Properties of Basic Search

Proposition

\textbf{Explore}\((G, u)\) terminates with \(S = rch(u)\).

Proposition

\(T\) is a search tree rooted at \(u\) containing \(S\) with edges directed away from root to leaves.
1. Given G and nodes u and v, can u reach v?
2. Given G and u, compute $rch(u)$.

Use $Explore(G, u)$ to compute $rch(u)$ in $O(n + m)$ time.
Given G and u, compute all v that can reach u, that is all v such that $u \in \text{rch}(v)$.
Given G and u, compute all v that can reach u, that is all v such that $u \in \text{rch}(v)$.

Naive: $O(n(n + m))$
Given G and u, compute all v that can reach u, that is all v such that $u \in \text{rch}(v)$.

Naive: $O(n(n + m))$

Definition (Reverse graph.)

Given $G = (V, E)$, G^{rev} is the graph with edge directions reversed:

$G^{\text{rev}} = (V, E')$ where $E' = \{(y, x) \mid (x, y) \in E\}$
Given G and u, compute all v that can reach u, that is all v such that $u \in \text{rch}(v)$.

Naive: $O(n(n + m))$

Definition (Reverse graph.)

Given $G = (V, E)$, G^{rev} is the graph with edge directions reversed

$G^{\text{rev}} = (V, E')$ where $E' = \{(y, x) \mid (x, y) \in E\}$

Compute $\text{rch}(u)$ in G^{rev}!

Running time: $O(n + m)$ to obtain G^{rev} from G and $O(n + m)$ time to compute $\text{rch}(u)$ via Basic Search.
\[\text{SCC}(G, u) = \{ v \mid u \text{ is strongly connected to } v \} \]
Algorithms via Basic Search - III

\[\text{SCC}(G, u) = \{ v \mid u \text{ is strongly connected to } v \} \]

Find the strongly connected component containing node \(u \). That is, compute \(\text{SCC}(G, u) \).
$\text{SCC}(G, u) = \{ v \mid u \text{ is strongly connected to } v \}$

1. Find the strongly connected component containing node u. That is, compute $\text{SCC}(G, u)$.

$\text{SCC}(G, u) = \text{rch}(G, u) \cap \text{rch}(G^{rev}, u)$
Algorithms via Basic Search - III

\[\text{SCC}(G, u) = \{v \mid u \text{ is strongly connected to } v\} \]

1. Find the strongly connected component containing node \(u \).
 That is, compute \(\text{SCC}(G, u) \).

\[\text{SCC}(G, u) = \text{rch}(G, u) \cap \text{rch}(G^{\text{rev}}, u) \]

Hence, \(\text{SCC}(G, u) \) can be computed with \(\text{Explore}(G, u) \) and \(\text{Explore}(G^{\text{rev}}, u) \). Total \(O(n + m) \) time.
Is G strongly connected?
Is G strongly connected?

Pick arbitrary vertex u. Check if $\text{SCC}(G, u) = V$.

Find all strongly connected components of G.

Running time: $O(n(n+m))$.

Question: Can we do it in $O(n+m)$ time?
Find all strongly connected components of G.

While G is not empty do
 Pick arbitrary node u
 find $S = \text{SCC}(G, u)$
 Remove S from G
Find all strongly connected components of G.

While G is not empty do
 Pick arbitrary node u
 find $S = \text{SCC}(G, u)$
 Remove S from G
Find all strongly connected components of G.

While G is not empty do
 Pick arbitrary node u
 find $S = SCC(G, u)$
 Remove S from G

Running time: $O(n(n + m))$.
Find all strongly connected components of G.

While G is not empty do
 Pick arbitrary node u
 find $S = SCC(G, u)$
 Remove S from G

Running time: $O(n(n + m))$.

Question: Can we do it in $O(n + m)$ time?
Structure of a Directed Graph

Graph G

Reminder

G_{SCC} is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph G_{SCC} is a DAG.
Part III

Directed Acyclic Graphs
A directed graph G is a **directed acyclic graph (DAG)** if there is no directed cycle in G.

![Diagram of a directed acyclic graph](image)
Sources and Sinks

A vertex u is a **source** if it has no in-coming edges.

A vertex u is a **sink** if it has no out-going edges.
Proposition

Every DAG G has at least one source and at least one sink.
Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink.
Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink.

Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.
Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink.

Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.

G is a **DAG** if and only if G^{rev} is a **DAG**.
Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink.

Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.

1. G is a DAG if and only if G^{rev} is a DAG.
2. G is a DAG if and only if each node is in its own strong connected component.

Formal proofs: exercise.
Topological Ordering/Sorting

Graph G

Definition

A **topological ordering/topological sorting** of $G = (V, E)$ is an ordering \prec on V such that if $(u, v) \in E$ then $u \prec v$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.
Lemma

A directed graph G can be topologically ordered iff it is a DAG.

Need to show both directions.
Lemma

A directed graph G can be topologically ordered if it is a DAG.

Proof.

Consider the following algorithm:

1. Pick a source u, output it.
2. Remove u and all edges out of u.
3. Repeat until graph is empty.

Exercise: prove this gives topological sort.

Exercise: show algorithm can be implemented in $O(m + n)$ time.
Topological Sort: Example

The diagram illustrates a topological sort on a directed acyclic graph (DAG). The vertices are labeled with letters from 'a' to 'h'. The arrows indicate the direction of the edges. A topological sort is a linear ordering of the vertices such that for every directed edge (u, v), vertex u comes before vertex v in the ordering. One possible topological sort for this graph is: a, b, c, d, e, f, g, h.
Lemma

A directed graph G can be topologically ordered only if it is a DAG.

Proof.

Suppose G is not a DAG and has a topological ordering \prec. G has a cycle $C = u_1, u_2, \ldots, u_k, u_1$. Then $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1$. That is... $u_1 \prec u_1$. A contradiction (to \prec being an order). Not possible to topologically order the vertices.
DAGs and Topological Sort

Note: A **DAG** G may have many different topological sorts.

Question: What is a **DAG** with the most number of distinct topological sorts for a given number n of vertices?

Question: What is a **DAG** with the least number of distinct topological sorts for a given number n of vertices?