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Part I

Connectivity on Undirectd Graphs
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Connectivity Problems on Undirected Graphs

Algorithmic Problems
1 Given graph G and nodes u and v , is u connected to v?

2 Given G and node u, find all nodes that are connected to u.

3 Find all connected components of G .

Can be accomplished in O(m + n) time using BFS or DFS.
BFS and DFS are refinements of a basic search procedure which is
good to understand on its own.
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Basic Graph Search in Undirected Graphs

Given G = (V ,E) and vertex u ∈ V . Let n = |V |.
Explore(G,u):

array Visited [1..n]
Initialize: Set Visited [i ] = FALSE for 1 ≤ i ≤ n
List: ToExplore, S
Add u to ToExplore and to S, Visited [u] = TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge (x, y) in Adj(x) do

if (Visited [y ] == FALSE)

Visited [y ] = TRUE
Add y to ToExplore
Add y to S

Output S
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Example

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7

8

9

10

Definition

The set of connected components of a graph is the set
{con(u) | u ∈ V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.

Viswanathan CS473ug
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Properties of Basic Search

Proposition

Explore(G , u) terminates with S = con(u).

Proof Sketch.
Once Visited [i ] is set to TRUE it never changes. Hence a
node is added only once to ToExplore. Thus algorithm
terminates in at most n iterations of while loop.

If v ∈ con(u), then v ∈ S .

If v /∈ con(u), then v /∈ S .

Thus S = con(u) at termination.
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Properties of Basic Search

Depth First Search (DFS): use stack data structure to implement the
list ToExplore
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Properties of Basic Search

DFS and BFS are special case of BasicSearch.

1 Depth First Search (DFS): use stack data structure to
implement the list ToExplore

2 Breadth First Search (BFS): use queue data structure to
implementing the list ToExplore
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Search Tree

One can create a natural search tree T rooted at u during search.

Explore(G,u):
array Visited [1..n]
Initialize: Set Visited [i ] = FALSE for 1 ≤ i ≤ n
List: ToExplore, S
Add u to ToExplore and to S, Visited [u] = TRUE
Make tree T with root as u
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge (x, y) in Adj(x) do

if (Visited [y ] == FALSE)

Visited [y ] = TRUE
Add y to ToExplore
Add y to S
Add y to T with x as its parent

Output S

T is a spanning tree of con(u) rooted at u
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Spanning tree

A depth-first and breadth-first spanning tree.
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Finding all connected components

Exercise: Modify Basic Search to find all connected components of
a given graph G in O(m + n) time.
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Part II

Directed Graphs
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Directed Graphs

Definition
A directed graph G = (V ,E)
consists of

1 set of vertices/nodes V
and

2 a set of edges/arcs
E ⊆ V × V .

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

An edge is an ordered pair of vertices. (u, v) different from (v , u).
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Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:

1 Road networks with one-way streets.

2 Web-link graph: vertices are web-pages and there is an edge
from page p to page p′ if p has a link to p′. Web graphs used
by Google with PageRank algorithm to rank pages.

3 Dependency graphs in variety of applications: link from x to y if
y depends on x . Make files for compiling programs.

4 Program Analysis: functions/procedures are vertices and there is
an edge from x to y if x calls y .
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Directed Graph Representation

Graph G = (V ,E) with n vertices and m edges:

1 Adjacency Matrix: n × n asymmetric matrix A. A[u, v ] = 1
if (u, v) ∈ E and A[u, v ] = 0 if (u, v) 6∈ E . A[u, v ] is not
same as A[v , u].

2 Adjacency Lists: for each node u, Out(u) (also referred to as
Adj(u)) and In(u) store out-going edges and in-coming edges
from u.

Default representation is adjacency lists.
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A Concrete Representation for Directed Graphs

Concrete representation discussed previously for undirected graphs
easily extends to directed graphs.

Array of edges E

ej

information including end point indices

Array of adjacency lists

vi

List of edges (indices) that are incident to vi
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Directed Connectivity

Given a graph G = (V ,E):

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

A (directed) path is a sequence of distinct vertices v1, v2, . . . , vk
such that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1. The length of the
path is k − 1 and the path is from v1 to vk .
By convention, a single node u is a path of length 0.
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Directed Connectivity

Given a graph G = (V ,E):

Basic Graph Theory
Breadth First search
Depth First Search
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Definition

A directed graph (also called a digraph) is G = (V ,E ), where
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A vertex u can reach v if there is a path from u to v .

Let rch(u) be the set of all vertices reachable from u.
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Directed Connectivity

Asymmetricity: D can reach B but B cannot reach D

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

Questions:

1 Is there a notion of connected components?

2 How do we understand connectivity in directed graphs?
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Connectivity and Strong Connected Components

Definition
Given a directed graph G , u is strongly connected to v if u can reach
v and v can reach u. In other words v ∈ rch(u) and u ∈ rch(v).

Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation, that is reflexive, symmetric and
transitive.

Equivalence classes of C : strong connected components of G .
They partition the vertices of G .
SCC(u): strongly connected component containing u.
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Strongly Connected Components: Example

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug
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Directed Graph Connectivity Problems

1 Given G and nodes u and v , can u reach v?

2 Given G and u, compute rch(u).

3 Given G and u, compute all v that can reach u, that is all v
such that u ∈ rch(v).

4 Find the strongly connected component containing node u, that
is SCC(u).

5 Is G strongly connected (a single strong component)?

6 Compute all strongly connected components of G .
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Basic Graph Search in Directed Graphs

Given G = (V ,E) a directed graph and vertex u ∈ V . Let
n = |V |.

Explore(G,u):
array Visited [1..n]
Initialize: Set Visited [i ] = FALSE for 1 ≤ i ≤ n
List: ToExplore, S
Add u to ToExplore and to S, Visited [u] = TRUE
Make tree T with root as u
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge (x, y) in Adj(x) do

if (Visited [y ] == FALSE)

Visited [y ] = TRUE
Add y to ToExplore
Add y to S
Add y to T with edge (x, y)

Output S
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Properties of Basic Search

Proposition

Explore(G , u) terminates with S = rch(u).

Proposition
T is a search tree rooted at u containing S with edges directed away
from root to leaves.
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Algorithms via Basic Search - I

1 Given G and nodes u and v , can u reach v?

2 Given G and u, compute rch(u).

Use Explore(G , u) to compute rch(u) in O(n + m) time.
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Algorithms via Basic Search - II

1 Given G and u, compute all v that can reach u, that is all v
such that u ∈ rch(v).

Naive: O(n(n + m))

Definition (Reverse graph.)

Given G = (V ,E), G rev is the graph with edge directions reversed
G rev = (V ,E ′) where E ′ = {(y , x) | (x, y) ∈ E}

Compute rch(u) in G rev !

1 Running time: O(n + m) to obtain G rev from G and
O(n + m) time to compute rch(u) via Basic Search.
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Algorithms via Basic Search - III

SCC(G , u) = {v | u is strongly connected to v}

1 Find the strongly connected component containing node u.
That is, compute SCC(G , u).

SCC(G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC(G , u) can be computed with Explore(G , u) and
Explore(G rev , u). Total O(n + m) time.
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Algorithms via Basic Search - IV

1 Is G strongly connected?

Pick arbitrary vertex u. Check if SCC(G , u) = V .
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Algorithms via Basic Search - V

1 Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u
find S = SCC(G , u)
Remove S from G

Running time: O(n(n + m)).

Question: Can we do it in O(n + m) time?
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Algorithms via Basic Search - V
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Algorithms via Basic Search - V
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Structure of a Directed Graph
AB C

DE F

G H

Graph G

B,E , F

G H

A,C ,D

Graph of SCCs GSCC

Reminder

GSCC is created by collapsing every strong connected component to a
single vertex.

Proposition

For a directed graph G, its meta-graph GSCC is a DAG.
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Part III

Directed Acyclic Graphs
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Directed Acyclic Graphs

Definition
A directed graph G is a
directed acyclic graph
(DAG) if there is no directed
cycle in G. 1

2 3

4
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Sources and Sinks

source sink

1

2 3

4

Definition
1 A vertex u is a source if it has no in-coming edges.

2 A vertex u is a sink if it has no out-going edges.
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Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G . Claim that v1 is a
source and vk is a sink.
Suppose not. Then v1 has an incoming edge which either creates a
cycle or a longer path both of which are contradictions. Similarly if
vk has an outgoing edge.

1 G is a DAG if and only if Grev is a DAG.
2 G is a DAG if and only if each node is in its own strong

connected component.

Formal proofs: exercise.
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Topological Ordering/Sorting

1

2 3

4

Graph G

1 2 3 4

Topological Ordering of G

Definition
A topological ordering/topological sorting of G = (V ,E) is an
ordering ≺ on V such that if (u, v) ∈ E then u ≺ v .

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis)
such that all edges are from left to right.

(UIUC) CS/ECE 374 35 March 23, 2021 35 / 41



DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered iff it is a DAG.

Need to show both directions.
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DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered if it is a DAG.

Proof.
Consider the following algorithm:

1 Pick a source u, output it.

2 Remove u and all edges out of u.

3 Repeat until graph is empty.

Exercise: prove this gives toplogical sort.

Exercise: show algorithm can be implemented in O(m + n) time.
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Topological Sort: Example

a b c

d e

f g

h
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DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered only if it is a DAG.

Proof.
Suppose G is not a DAG and has a topological ordering ≺. G has a
cycle C = u1, u2, . . . , uk , u1.
Then u1 ≺ u2 ≺ . . . ≺ uk ≺ u1!
That is... u1 ≺ u1.
A contradiction (to ≺ being an order).
Not possible to topologically order the vertices.
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DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the most number of distinct
topological sorts for a given number n of vertices?

Question: What is a DAG with the least number of distinct
topological sorts for a given number n of vertices?
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