Directed Graph, DAGs and Topological Sort

Lecture 16
Part I

Connectivity on Undirected Graphs
Connectivity Problems on Undirected Graphs

Algorithmic Problems

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Given graph G and nodes u and v, is u connected to v?</td>
</tr>
<tr>
<td>2</td>
<td>Given G and node u, find all nodes that are connected to u.</td>
</tr>
<tr>
<td>3</td>
<td>Find all connected components of G.</td>
</tr>
</tbody>
</table>

Can be accomplished in $O(m + n)$ time using **BFS** or **DFS**. **BFS** and **DFS** are refinements of a basic search procedure which is good to understand on its own.
Given $G = (V, E)$ and vertex $u \in V$. Let $n = |V|$.

Explore(G, u):

- array $Visited[1..n]$
- Initialize: Set $Visited[i] = \text{FALSE}$ for $1 \leq i \leq n$
- List: ToExplore, S
- Add u to ToExplore and to S, $Visited[u] = \text{TRUE}$

while (ToExplore is non-empty) do

 Remove node x from ToExplore

 for each edge (x, y) in $\text{Adj}(x)$ do

 if ($Visited[y] == \text{FALSE}$)

 if ($Visited[y] == \text{FALSE}$)

 $Visited[y] = \text{TRUE}$

 Add y to ToExplore

 Add y to S

Output S
Example

Connected Graphs

1 2 3 4 5 6 7 8 9 10

1. The set of connected components of a graph is the set \{v | v \in V\}.
2. The connected components in the above graph are \{1, 2, 3, 4, 5, 6, 7, 8\} and \{9, 10\}.
3. A graph is said to be connected when it has exactly one connected component. In other words, every pair of vertices in the graph are connected.
Properties of Basic Search

Proposition

\textbf{Proposition}

\textbf{Explore}\((G, u)\) \textit{terminates with} \(S = \text{con}(u)\).
Proposition

\[\text{Explore}(G, u) \text{ terminates with } S = \text{con}(u). \]

Proof Sketch.

Once \textit{Visited}[i] is set to \textit{TRUE} it never changes. Hence a node is added only once to \textit{ToExplore}. Thus algorithm terminates in at most \(n \) iterations of while loop.
Proposition

\[\text{Explore}(G, u) \text{ terminates with } S = \text{con}(u). \]

Proof Sketch.

- Once \(\text{Visited}[i] \) is set to \(\text{TRUE} \) it never changes. Hence a node is added only once to \(\text{ToExplore} \). Thus algorithm terminates in at most \(n \) iterations of while loop.
- If \(v \in \text{con}(u) \), then \(v \in S \).
- If \(v \notin \text{con}(u) \), then \(v \notin S \).
- Thus \(S = \text{con}(u) \) at termination.
Properties of Basic Search

Depth First Search (**DFS**): use stack data structure to implement the list **ToExplore**

RECURSIVEDFS(v):
- if v is unmarked
 - mark v
 - for each edge vw
 - **RECURSIVEDFS**(w)

ITERATIVEDFS(s):
- **Push**(s)
- while the stack is not empty
 - $v \leftarrow \text{Pop}$
 - if v is unmarked
 - mark v
 - for each edge vw
 - **Push**(w)
Properties of Basic Search

DFS and **BFS** are special case of BasicSearch.

1. **Depth First Search (DFS)**: use stack data structure to implement the list **ToExplore**

2. **Breadth First Search (BFS)**: use queue data structure to implementing the list **ToExplore**
Search Tree

One can create a natural search tree T rooted at u during search.

Explore(G,u):
- array $Visited[1..n]$
- Initialize: Set $Visited[i] = FALSE$ for $1 \leq i \leq n$
- List: $ToExplore, S$
- Add u to $ToExplore$ and to S, $Visited[u] = TRUE$
- Make tree T with root as u

while ($ToExplore$ is non-empty) do
 Remove node x from $ToExplore$
 for each edge (x, y) in $Adj(x)$ do
 if ($Visited[y] == FALSE$)
 $Visited[y] = TRUE$
 Add y to $ToExplore$
 Add y to S
 Add y to T with x as its parent

Output S

T is a spanning tree of $\text{con}(u)$ rooted at u
Spanning tree

A depth-first and breadth-first spanning tree.
Finding all connected components

Exercise: Modify Basic Search to find all connected components of a given graph G in $O(m + n)$ time.
Part II

Directed Graphs
Directed Graphs

Definition

A directed graph \(G = (V, E) \) consists of

1. set of vertices/nodes \(V \)
2. a set of edges/arcs \(E \subseteq V \times V \).

An edge is an ordered pair of vertices. \((u, v)\) different from \((v, u)\).
Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:

1. Road networks with one-way streets.

2. Web-link graph: vertices are web-pages and there is an edge from page p to page p' if p has a link to p'. Web graphs used by Google with PageRank algorithm to rank pages.

3. Dependency graphs in variety of applications: link from x to y if y depends on x. Make files for compiling programs.

4. Program Analysis: functions/procedures are vertices and there is an edge from x to y if x calls y.
Directed Graph Representation

Graph \(G = (V, E) \) with \(n \) vertices and \(m \) edges:

1. **Adjacency Matrix**: \(n \times n \) asymmetric matrix \(A \). \(A[u, v] = 1 \) if \((u, v) \in E\) and \(A[u, v] = 0 \) if \((u, v) \not\in E\). \(A[u, v] \) is not same as \(A[v, u] \).

2. **Adjacency Lists**: for each node \(u \), \(\text{Out}(u) \) (also referred to as \(\text{Adj}(u) \)) and \(\text{In}(u) \) store out-going edges and in-coming edges from \(u \).

Default representation is adjacency lists.
Concrete representation discussed previously for undirected graphs easily extends to directed graphs.

Array of edges E

Array of adjacency lists

List of edges (indices) that are incident to v_i
Directed Connectivity

Given a graph \(G = (V, E) \):

A (directed) path is a sequence of distinct vertices \(v_1, v_2, \ldots, v_k \) such that \((v_i, v_{i+1}) \in E \) for \(1 \leq i \leq k - 1 \). The length of the path is \(k - 1 \) and the path is from \(v_1 \) to \(v_k \).

By convention, a single node \(u \) is a path of length 0.
Directed Connectivity

Given a graph $G = (V, E)$:

A vertex u can reach v if there is a path from u to v.
Directed Connectivity

Given a graph \(G = (V, E) \):

A vertex \(u \) can reach \(v \) if there is a path from \(u \) to \(v \).

Let \(\text{rch}(u) \) be the set of all vertices reachable from \(u \).
Directed Connectivity

Asymmetricity: \(D \) can reach \(B \) but \(B \) cannot reach \(D \)

![Diagram of directed graph]

Questions:

1. Is there a notion of connected components?
2. How do we understand connectivity in directed graphs?
Directed Connectivity

Asymmetricity: D can reach B but B cannot reach D

Questions:
1. Is there a notion of connected components?
2. How do we understand connectivity in directed graphs?
Connectivity and Strong Connected Components

Definition

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in \text{rch}(u)$ and $u \in \text{rch}(v)$.
Connectivity and Strong Connected Components

Definition

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in rch(u)$ and $u \in rch(v)$.

Define relation C where uCv if u is (strongly) connected to v.
Connectivity and Strong Connected Components

Definition

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in \text{rch}(u)$ and $u \in \text{rch}(v)$.

Define relation C where uCv if u is (strongly) connected to v.

Proposition

C is an equivalence relation, that is reflexive, symmetric and transitive.
Connectivity and Strong Connected Components

Definition

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in \text{rch}(u)$ and $u \in \text{rch}(v)$.

Define relation C where uCv if u is (strongly) connected to v.

Proposition

C is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of C: *strong connected components* of G. They *partition* the vertices of G.

$\text{SCC}(u)$: strongly connected component containing u.
Strongly Connected Components: Example

A directed graph (also called a digraph) is $G = (V, E)$, where V is a set of vertices or nodes $E \subseteq V \times V$ is set of ordered pairs of vertices called edges.

Diagram:

- Nodes: B, A, C, E, F, D, G, H
- Edges:
 - $B \rightarrow A$
 - $A \rightarrow C$
 - $E \rightarrow F$
 - $F \rightarrow D$
 - $D \rightarrow E$
 - $G \rightarrow H$
 - $H \rightarrow E$
 - $A \rightarrow G$
 - $G \rightarrow A$

Viswanathan CS473ug (UIUC)
Directed Graph Connectivity Problems

1. Given G and nodes u and v, can u reach v?
2. Given G and u, compute $rch(u)$.
3. Given G and u, compute all v that can reach u, that is all v such that $u \in rch(v)$.
4. Find the strongly connected component containing node u, that is $SCC(u)$.
5. Is G strongly connected (a single strong component)?
6. Compute all strongly connected components of G.
Given $G = (V, E)$ a directed graph and vertex $u \in V$. Let $n = |V|$.

```
Explore(G, u):
    array Visited[1..n]
    Initialize: Set Visited[i] = FALSE for 1 ≤ i ≤ n
    List: ToExplore, S
    Add u to ToExplore and to S, Visited[u] = TRUE
    Make tree T with root as u
    while (ToExplore is non-empty) do
        Remove node x from ToExplore
        for each edge (x, y) in Adj(x) do
            if (Visited[y] == FALSE)
                Visited[y] = TRUE
                Add y to ToExplore
                Add y to S
                Add y to T with edge (x, y)
        Output S
```
Properties of Basic Search

Proposition

\textbf{Explore}(G, u) \textit{ terminates with } S = rch(u).
Properties of Basic Search

Proposition

$$\text{Explore}(G, u) \text{ terminates with } S = rch(u).$$

Proposition

T is a search tree rooted at u containing S with edges directed away from root to leaves.
1. Given G and nodes u and v, can u reach v?
2. Given G and u, compute $rch(u)$.

Use $Explore(G, u)$ to compute $rch(u)$ in $O(n + m)$ time.
Given \(G \) and \(u \), compute all \(v \) that can reach \(u \), that is all \(v \) such that \(u \in \text{rch}(v) \).
Given G and u, compute all v that can reach u, that is all v such that $u \in \text{rch}(v)$.

Naive: $O(n(n + m))$
Given G and u, compute all v that can reach u, that is all v such that $u \in rch(v)$.

Naive: $O(n(n + m))$

Definition (Reverse graph.)

Given $G = (V, E)$, G^{rev} is the graph with edge directions reversed $G^{\text{rev}} = (V, E')$ where $E' = \{(y, x) \mid (x, y) \in E\}$
Given G and u, compute all v that can reach u, that is all v such that $u \in rch(v)$.

Naive: $O(n(n + m))$

Definition (Reverse graph.)

Given $G = (V, E)$, G^{rev} is the graph with edge directions reversed $G^{rev} = (V, E')$ where $E' = \{(y, x) \mid (x, y) \in E\}$

Compute $rch(u)$ in G^{rev}!

Running time: $O(n + m)$ to obtain G^{rev} from G and $O(n + m)$ time to compute $rch(u)$ via Basic Search.
$\text{SCC}(G, u) = \{ v \mid u \text{ is strongly connected to } v \}$
\[\text{SCC}(G, u) = \{ v \mid u \text{ is strongly connected to } v \} \]

Find the strongly connected component containing node \(u \). That is, compute \(\text{SCC}(G, u) \).
The strongly connected component containing node u is defined as:

$$\text{SCC}(G, u) = \{ v \mid u \text{ is strongly connected to } v \}$$

1. Find the strongly connected component containing node u. That is, compute $\text{SCC}(G, u)$.

$$\text{SCC}(G, u) = \text{rch}(G, u) \cap \text{rch}(G^{\text{rev}}, u)$$
Find the strongly connected component containing node u. That is, compute $\text{SCC}(G, u)$.

$$\text{SCC}(G, u) = \{v \mid u \text{ is strongly connected to } v\}$$

Hence, $\text{SCC}(G, u)$ can be computed with $\text{Explore}(G, u)$ and $\text{Explore}(G^{\text{rev}}, u)$. Total $O(n + m)$ time.
Is G strongly connected?
Is G strongly connected?

Pick arbitrary vertex u. Check if $\text{SCC}(G, u) = V$.
Find all strongly connected components of G.
Find all strongly connected components of G.

While G is not empty do
 Pick arbitrary node u
 find $S = \text{SCC}(G, u)$
 Remove S from G
Find all strongly connected components of G.

While G is not empty do
Pick arbitrary node u
find $S = SCC(G, u)$
Remove S from G
Find all strongly connected components of G.

While G is not empty do
 Pick arbitrary node u
 find $S = \text{SCC}(G, u)$
 Remove S from G

Running time: $O(n(n + m))$.
Find all strongly connected components of G.

While G is not empty do
- Pick arbitrary node u
- find $S = SCC(G, u)$
- Remove S from G

Running time: $O(n(n + m))$.

Question: Can we do it in $O(n + m)$ time?
Structure of a Directed Graph

Graph G

Graph of SCCs G^{SCC}

Reminder

G^{SCC} is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.
Part III

Directed Acyclic Graphs
A directed graph G is a **directed acyclic graph (DAG)** if there is no directed cycle in G.

![Diagram of a directed acyclic graph]

- Node 1 points to node 2
- Node 2 points to node 3
- Node 3 points to node 4
- Node 4 points to node 1
Definition

1. A vertex u is a **source** if it has no in-coming edges.
2. A vertex u is a **sink** if it has no out-going edges.
Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink.

Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.

1. G is a DAG if and only if G^rev is a DAG.

2. G is a DAG if and only if each node is in its own strong connected component.

Formal proofs: exercise.
Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink.
Simple DAG Properties

Proposition

Every \textbf{DAG} G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink.

Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.
Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink. Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.

G is a DAG if and only if G^{rev} is a DAG.
Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink. Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.

1. G is a DAG if and only if G^{rev} is a DAG.
2. G is a DAG if and only if each node is in its own strong connected component.

Formal proofs: exercise.
Definition

A **topological ordering/topological sorting** of $G = (V, E)$ is an ordering \prec on V such that if $(u, v) \in E$ then $u \prec v$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.
Lemma

A directed graph G can be topologically ordered iff it is a DAG.

Need to show both directions.
Lemma

A directed graph G can be topologically ordered if it is a DAG.

Proof.

Consider the following algorithm:

1. Pick a source u, output it.
2. Remove u and all edges out of u.
3. Repeat until graph is empty.

Exercise: prove this gives topological sort.

Exercise: show algorithm can be implemented in $O(m + n)$ time.
Topological Sort: Example

a → b → c → d → e → f → g → h
Lemma

A directed graph G can be topologically ordered only if it is a DAG.

Proof.

Suppose G is not a DAG and has a topological ordering \prec. G has a cycle $C = u_1, u_2, \ldots, u_k, u_1$. Then $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1$! That is... $u_1 \prec u_1$. A contradiction (to \prec being an order). Not possible to topologically order the vertices.
DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the most number of distinct topological sorts for a given number n of vertices?

Question: What is a DAG with the least number of distinct topological sorts for a given number n of vertices?