CS/ECE 374: Algorithms & Models of
Computation

Independent Sets in Trees
and Graph Basics

Lecture 15
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How to design DP algorithms

© Find a “smart” recursion (The hard part)
©® Formulate the sub-problem
@ so that the number of distinct subproblems is small; polynomial
in the original problem size.
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How to design DP algorithms

© Find a “smart” recursion (The hard part)
©® Formulate the sub-problem
@ so that the number of distinct subproblems is small; polynomial
in the original problem size.

@ Memoization
@ ldentify distinct subproblems
@ Choose a memoization data structure
@ ldentify dependencies and find a good evaluation order
O An iterative algorithm replacing recursive calls with array
lookups
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Which data structure?

So far our memoization uses multi-dimensional arrays:
@ Fibonacci numbers, 1-D array
@ Text segmentation, suffix, 1-D array
@ Longest increasing subsequence, suffix+index, 2-D array

e Edit distance, two prefixes, 2-D array
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Which data structure?

So far our memoization uses multi-dimensional arrays:
@ Fibonacci numbers, 1-D array
@ Text segmentation, suffix, 1-D array
@ Longest increasing subsequence, suffix+index, 2-D array

e Edit distance, two prefixes, 2-D array

Not always true.
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Part |

Maximum Weight Independent Set in

Trees
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Independent Set in a Graph

Definition

Given undirected graph G = (V/, E) a subset of nodes S C V is an
independent set if there are no edges between nodes in S. That is, if
u,v € S then (u,v) € E.

Some independent sets in graph above: {D},{A,C},{B, E, F}
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Maximum Weight Independent Set Problem

Input Graph G = (V/, E) and weights w(v) > 0 for each
vev

Goal Find maximum weight independent set in G
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Maximum Weight Independent Set Problem

Input Graph G = (V/, E) and weights w(v) > 0 for each
vev

Goal Find maximum weight independent set in G
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Maximum Weight Independent Set Problem

Input Graph G = (V/, E) and weights w(v) > 0 for each
vev

Goal Find maximum weight independent set in G

Some independent sets in graph above: {D},{A,C},{B,E, F}
Maximum weight independent set in above graph: {B, D}
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Maximum Weight Independent Set Problem

@ Finding the largest independent set in an arbitrary graph is
extremely hard

@ the canonical NP-hard problem
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Backtracking

Convert into a sequence of decision problems.
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Backtracking

Convert into a sequence of decision problems.
© Number vertices as vy, Vo, ..., V,

@ Decision problem: to include v,, or not
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Backtracking

Convert into a sequence of decision problems.

Number vertices as vi, Vo, ..., V,
Decision problem: to include v,, or not

Try all possibilities and let the recursion fairy take care of the
remaining decisions

Find recursively optimum solutions without v,, (recurse on

G — v,) and with v, (recurse on G — v, — N(v,) & include
Vn).
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Backtracking

Convert into a sequence of decision problems.

Number vertices as vi, Vo, ..., V,
Decision problem: to include v,, or not

Try all possibilities and let the recursion fairy take care of the
remaining decisions

Find recursively optimum solutions without v,, (recurse on

G — v,) and with v, (recurse on G — v, — N(v,) & include
Vn).

If graph G is arbitrary there is no good ordering that resulted in
a small number of subproblems.
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Maximum Weight Independent Set Problem

@ Finding the largest independent set in an arbitrary graph is
extremely hard

@ the canonical NP-hard problem
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Maximum Weight Independent Set Problem

@ Finding the largest independent set in an arbitrary graph is
extremely hard

@ the canonical NP-hard problem

@ But in some special classes of graphs, we can find largest
independent sets quickly

@ when the input graph is a tree with n vertices, we can compute
in O(n) time
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Maximum Weight Independent Set in a Tree

Input Tree T = (V, E) and weights w(v) > 0 for each
vev

Goal Find maximum weight independent set in T
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Backtracking

Convert into a sequence of decision problems.
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Backtracking

Convert into a sequence of decision problems.

Number vertices as vi, Vo, ..., V,
Decision problem: to include v,, or not

Try all possibilities and let the recursion fairy take care of the
remaining decisions

Find recursively optimum solutions without v,, (recurse on

G — v,) and with v, (recurse on G — v, — N(v,) & include
Vn).

If graph G is arbitrary there is no good ordering that resulted in
a small number of subproblems.
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Backtracking

Convert into a sequence of decision problems.
© Number vertices as vy, Vo, ..., V,
Decision problem: to include v,, or not

(2]

© Try all possibilities and let the recursion fairy take care of the
remaining decisions

()

Find recursively optimum solutions without v,, (recurse on
G — v,) and with v, (recurse on G — v, — N(v,) & include
Vn).

© If graph G is arbitrary there is no good ordering that resulted in
a small number of subproblems.

What is special about a tree?
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Optimal substructure
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Optimal substructure
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Optimal substructure

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT (u) =
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Optimal substructure

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT(u) = max v child of » OPT (),
W(U) + Zv grandchild of u OPT(V)
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Optimal substructure

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT(u) = max v child of » OPT (),
W(U) + Zv grandchild of u OPT(V)

Is it a smart recursion?
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Optimal substructure

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT(u) = max v child of » OPT (),
W(U) + Zv grandchild of u OPT(V)

Is it a smart recursion? How many distinct subproblems? O(n)
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Optimal substructure

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

Zv child of u OPT (v),

OPT (u) = max
{W(U) + Zv grandchild of u OPT(V)

Is it a smart recursion? How many distinct subproblems? O(n)

Base case: Reach a leaf of the tree
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Optimal substructure

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

Zv child of u OPT (v),

OPT (u) = max
{W(U) + Zv grandchild of u OPT(V)

Is it a smart recursion? How many distinct subproblems? O(n)
Base case: Reach a leaf of the tree

What data structure to memoize this recurrence?
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Optimal substructure

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

Zv child of u OPT (v),

OPT (u) = max
{W(U) + Zv grandchild of u OPT(V)

Is it a smart recursion? How many distinct subproblems? O(n)
Base case: Reach a leaf of the tree

What data structure to memoize this recurrence? A tree

(UIuQ) CS/ECE 374 13 March 18, 2021 13 /31



Order of evaluation

© Compute OPT (u) bottom up. To evaluate OPT (u) need to
have computed values of all children and grandchildren of u

© What is an ordering of nodes of a tree T to achieve above?
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Order of evaluation

© Compute OPT (u) bottom up. To evaluate OPT (u) need to
have computed values of all children and grandchildren of u

© What is an ordering of nodes of a tree T to achieve above?
Post-order traversal of a tree.
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lterative Algorithm

MIS-Tree(T):
Let vi,V2,...,V, be a post-order traversal of nodes of T
for i=1 to n do

Zvj child of v; Mlv;],
w(v;) + Zvj grandchild of v; Ml[v;]
return M[v,] (x Note: v, is the root of T %)

M[v;] = max
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lterative Algorithm

MIS-Tree(T):
Let vi,V2,...,V, be a post-order traversal of nodes of T
for i=1 to n do

Zvj child of v; Mlv;],
w(v;) + Zvj grandchild of v; Ml[v;]
return M[v,] (x Note: v, is the root of T %)

M[v;] = max

Space:
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lterative Algorithm

MIS-Tree(T):
Let vi,V2,...,V, be a post-order traversal of nodes of T
for i=1 to n do

Zvj child of v; Mlv;],
w(v;) + Zvj grandchild of v; Ml[v;]
return M[v,] (x Note: v, is the root of T %)

M[v;] = max

Space: O(n) to store the value at each node of T
Running time:

CS/ECE 374 March 18, 2021 15 /31



lterative Algorithm

MIS-Tree(T):
Let vi,V2,...,V, be a post-order traversal of nodes of T
for i=1 to n do

Zvj child of v; Mlv;],
w(v;) + Zvj grandchild of v; Ml[v;]
return M[v,] (x Note: v, is the root of T %)

M[v;] = max

Space: O(n) to store the value at each node of T
Running time:

@ Naive bound: O(n?) since each M[v;] evaluation may take
O(n) time and there are n evaluations.
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lterative Algorithm

MIS-Tree(T):
Let vi,V2,...,V, be a post-order traversal of nodes of T
for i=1 to n do

Zvj child of v; Mlv;],
w(v;) + Zvj grandchild of v; Ml[v;]
return M[v,] (x Note: v, is the root of T %)

M[v;] = max

Space: O(n) to store the value at each node of T
Running time:
@ Naive bound: O(n?) since each M[v;] evaluation may take
O(n) time and there are n evaluations.

@ Better bound: O(n). A value M[v;] is accessed only by its
parent and grand parent.
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Part 1l

Graph Basics
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Why Graphs?

© Many important and useful optimization problems are graph
problems
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Why Graphs?

© Many important and useful optimization problems are graph
problems

@ Two levels of resolution:
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Why Graphs?

© Many important and useful optimization problems are graph
problems
© Two levels of resolution:
@ Classic graph algorithms
® How to model a problem as a graph problem and solve it using
the classic algorithms
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Example: Medieval road network

CS/ECE 374 March 18, 2021 18 /31



Example: Modeling Problems as Search

State Space Search

Many search problems can be modeled as search on a graph.
The trick is figuring out what the vertices and edges are.

Missionaries and Cannibals
@ Three missionaries, three cannibals, one boat, one river
@ Boat carries two people, must have at least one person
@ Must all get across

@ At no time can cannibals outnumber missionaries

How is this a graph search problem?
What are the vertices?
What are the edges?
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Example: Missionaries and Cannibals Graph

( MMMCCCb | ] start

T~

[ MMMClCCbJ [ MMCC | MCb J [MCCClMMb ’

MMCCb | C
| MMMCCCb goal
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An undirected (simple) graph
G = (V,E) is a 2-tuple:

Q V is a set of vertices (also referred
to as nodes)

© E is a set of edges where each edge
e € E is a set of the form {u, v}
with u,v € V and u # v.

In figure, G = (V, E) where V ={1,2,3,4,5,6,7,8} and
E = {{1,2},{1,3},{2,3},{2,4},{2,5},{3,5}, {3, 7},
{3,8},{4,5},{5,6},{7,8}}.
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Notation and Convention

Graph is just a way of encoding pairwise relationships.

CS/ECE 374 March 18, 2021 22/31



Notation and Convention

Graph is just a way of encoding pairwise relationships.

An edge in an undirected graphs is an unordered pair of nodes and
hence it is a set. Conventionally we use (u, v) for {u, v} when it is
clear from the context that the graph is undirected.

© u and v are the end points of an edge {u, v}
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Graph Representation |

Adjacency Matrix

Represent G = (V/, E) with n vertices and m edges using a n X n
adjacency matrix A where
Q@ Ali,j] = Alj,i] = 1if {i,j} € E and A[i, j] = A[j,i] = 0
i {ij} & E.
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Graph Representation |

Adjacency Matrix

Represent G = (V/, E) with n vertices and m edges using a n X n
adjacency matrix A where
Q@ Ali,j] = Alj, il = 1if {i,j} € E and A[i, j] = Alj, i] = 0
i {ij} & E.
@ Advantage: can check if {i,j} € E in O(1) time
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Graph Representation |

Adjacency Matrix

Represent G = (V/, E) with n vertices and m edges using a n X n
adjacency matrix A where

Q Ali,jl1=Alj,il=1if {i,j} € E and A[i,j] = Al[j,i] =0
if {i,j} € E.

@ Advantage: can check if {i,j} € E in O(1) time

© Disadvantage: needs Q(n?) space even when m < n?
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Graph Representation |l

Adjacency Lists

Represent G = (V/, E) with n vertices and m edges using adjacency
lists:

Q For each u € V, Adj(u) = {v | {u,v} € E}, thatis
neighbors of u. Sometimes Adj(u) is the list of edges incident
to u.
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Graph Representation |l

Adjacency Lists

Represent G = (V/, E) with n vertices and m edges using adjacency
lists:

Q For each u € V, Adj(u) = {v | {u,v} € E}, thatis
neighbors of u. Sometimes Adj(u) is the list of edges incident
to u.

@ Advantage: space is O(m + n)
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Graph Representation |l

Adjacency Lists

Represent G = (V/, E) with n vertices and m edges using adjacency
lists:

Q For each u € V, Adj(u) = {v | {u,v} € E}, thatis
neighbors of u. Sometimes Adj(u) is the list of edges incident
to u.
@ Advantage: space is O(m + n)
@ Disadvantage: cannot “easily” determine in O(1) time whether
{i,j} €E
@ By sorting each list, one can achieve O(log n) time
@ By hashing “appropriately”, one can achieve O(1) time
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Graph Representation |l

Adjacency Lists

Represent G = (V/, E) with n vertices and m edges using adjacency
lists:

Q For each u € V, Adj(u) = {v | {u,v} € E}, thatis
neighbors of u. Sometimes Adj(u) is the list of edges incident
to u.
@ Advantage: space is O(m + n)
@ Disadvantage: cannot “easily” determine in O(1) time whether
{i,j} €E
@ By sorting each list, one can achieve O(log n) time
@ By hashing “appropriately”, one can achieve O(1) time

Note: In this class we will assume that by default, graphs are
represented using plain vanilla (unsorted) adjacency lists.
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A Concrete Representation

@ Assume vertices are numbered arbitrarily as {1,2, ..., n}.
o Edges are numbered arbitrarily as {1,2,..., m}.

o Edges stored in an array/list of size m. E[j] is j'th edge with
info on end points which are integers in range 1 to n.

@ Array Adj of size n for adjacency lists. Adj[i] points to
adjacency list of vertex i. Adj[i] is a list of edge indices in
range 1 to m.
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A Concrete Representation

Array of edges E

I [ 1]
!

information including end point indices

Array of adjacency lists

List of edges (indices) that are incident to v;

[ o ]

-

CS/ECE 374 March 18, 2021



Connectivity Problems

Algorithmic Problems

© Given graph G and nodes u and v, is u connected to v?
@ Given G and node u, find all nodes that are connected to u.

© Find all connected components of G.
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Connectivity on Undirected Graphs

Given a graph G = (V, E):

OIS GRO
N
G

o‘!‘ew
®

A path is a sequence of distinct vertices vy, Vo, ..., Vi such that
{vi,viz1} € E for1 < i < k — 1. The length of the path is k — 1
(the number of edges in the path) and the path is from v; to v.
Note: a single vertex u is a path of length 0.
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Connectivity on Undirected Graphs

Given a graph G = (V, E):

(1) ONO
ol
O ) ® ©
®
A cycle is a sequence of distinct vertices vy, Vo, ..., Vx such that

{vi,vis1} € Eforl1 < i< k—1and {v;, v} € E. Single vertex
not a cycle according to this definition.
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Connectivity on Undirected Graphs

Given a graph G = (V, E):

OIS GRO
N
G
o‘!‘ew
®

A vertex u is connected to v if there is a path from u to v.
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Connectivity on Undirected Graphs

Given a graph G = (V, E):
(1) ONO
o
®
A vertex u is connected to v if there is a path from u to v.

The connected component of u, con(u), is the set of all vertices
connected to u.
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Connectivity on Undirected Graphs

Define a relation C on V X V as uCv if
u is connected to v

© In undirected graphs, connectivity is A O
a reflexive, symmetric, and transitive 9'9
‘ ®

relation. Connected components are (5

(1)

the equivalence classes.

@ Graph is connected if only one
connected component.
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Connectivity Problems on Undirected Graphs

Algorithmic Problems

© Given graph G and nodes u and v, is u connected to v?
@ Given G and node u, find all nodes that are connected to u.

© Find all connected components of G.
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Connectivity Problems on Undirected Graphs

Algorithmic Problems

© Given graph G and nodes u and v, is u connected to v?
@ Given G and node u, find all nodes that are connected to u.

© Find all connected components of G.

Can be accomplished in O(m + n) time using BFS or DFS.
BFS and DFS are refinements of a basic search procedure which is
good to understand on its own.
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