CS/ECE 374: Algorithms & Models of
Computation

More DP: Text Segmentation
and Edit Distance

Lecture 14

CS/ECE 374 1 March 16, 2021 1/34



How to design DP algorithms

© Find a “smart” recursion (The hard part)
©® Formulate the sub-problem
@ so that the number of distinct subproblems is small; polynomial
in the original problem size.

CS/ECE 374 March 16, 2021 2/



How to design DP algorithms

© Find a “smart” recursion (The hard part)
©® Formulate the sub-problem
@ so that the number of distinct subproblems is small; polynomial
in the original problem size.

@ Memoization
@ ldentify distinct subproblems
@ Choose a memoization data structure
@ ldentify dependencies and find a good evaluation order
O An iterative algorithm replacing recursive calls with array
lookups

CS/ECE 374 March 16, 2021



Part |

More Text Segmentation

CS/ECE 374 March 16, 2021 3/34



A variation

Input A string w € X* and access to a language L C X* via
function IsStringinL(string x) that decides whether x
is in L, and non-negative integer k

Goal Decide if w € L using IsStringinL(string x) as a
black box sub-routine

Suppose L is English and we have a procedure to check whether a
string/word is in the English dictionary.

@ Is the string “isthisanenglishsentence” in English®?
o Is the string “isthisanenglishsentence” in English*?
e Is “asinineat” in English??

o Is “asinineat” in English*?

e Is “zibzzzad" in English'?

v

(UIUC) CS/ECE 374 4 March 16, 2021 4 /34



Recursive Solution

When is w € Lk?

CS/ECE 374 March 16, 2021 5/34



Recursive Solution

When is w € Lk?

k=0 welkiffw=c¢

k=1 welkiffwel

k>1 welkifw=uvwithu € Landv € Lk

CS/ECE 374

March 16, 2021 5/34



Recursive Solution

When is w € Lk?
k=0 welkiffw=c¢
k=1 welkiffwel
k>1 welkifw=uvwithu€&Landv e Lk!
Assume w is stored in array A[l..n]
IsStringinLk(A[1..n], k) :

If (k=0)

If (n=0) Output YES
Else Ouput NO
If (k=1

Output IsStringinL(A[1..n])
Else

For =1 to n—1) do

If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k — 1))
Output YES

Output NO
(UIuC)

CS/ECE 374 5 March 16, 2021 5/34



IsStringinLk(A[1..n], k) :
If (k=0)
If (n=0) Output YES
Else Ouput NO
If (k=1
Output IsStringinL(A[1..n])
Else
For (i=1to n—1) do
If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k — 1))
Output YES

Output NO

@ How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)?

CS/ECE 374 March 16, 2021 6/34



IsStringinLk(A[1..n], k) :
If (k=0)
If (n=0) Output YES
Else Ouput NO
If (k=1
Output IsStringinL(A[1..n])
Else
For (i=1to n—1) do
If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k — 1))
Output YES

Output NO

@ How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)

CS/ECE 374 March 16, 2021 6/34



IsStringinLk(A[1..n], k) :
If (k=0)
If (n=0) Output YES
Else Ouput NO
If (k=1
Output IsStringinL(A[1..n])
Else
For (i=1to n—1) do
If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k — 1))
Output YES

Output NO

@ How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)
@ How much space?

CS/ECE 374 March 16, 2021 6/34



IsStringinLk(A[1..n], k) :
If (k=0)
If (n=0) Output YES
Else Ouput NO
If (k=1
Output IsStringinL(A[1..n])
Else
For (i=1to n—1) do
If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k — 1))
Output YES

Output NO

@ How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)
@ How much space? O(nk)

CS/ECE 374 March 16, 2021 6/34



IsStringinLk(A[1..n], k) :
If (k=0)
If (n=0) Output YES
Else Ouput NO
If (k=1
Output IsStringinL(A[1..n])
Else
For (i=1to n—1) do
If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k — 1))
Output YES

Output NO

@ How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)

@ How much space? O(nk)

@ Running time?

(UIUC) CS/ECE 374 6 March 16, 2021 6 /34



IsStringinLk(A[1..n], k) :
If (k=0)
If (n=0) Output YES
Else Ouput NO
If (k=1
Output IsStringinL(A[1..n])
Else
For (i=1to n—1) do
If (IsStringinL(A[1..i]) and IsStringinLk(A[i + 1..n], k — 1))
Output YES

Output NO

@ How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)

@ How much space? O(nk)

@ Running time? O(n%k)

(UIUC) CS/ECE 374 6 March 16, 2021 6 /34



Naming subproblems and recursive equation

ISLk(i, h): a boolean which is 1 if A[i..n] is in L", 0 otherwise

Base case: ISLk(n + 1,0) = 1 interpreting A[n 4 1..n] as €

CS/ECE 374 March 16, 2021 7/



Naming subproblems and recursive equation

ISLk(i, h): a boolean which is 1 if A[i..n] is in L", 0 otherwise
Base case: ISLk(n + 1,0) = 1 interpreting A[n 4 1..n] as €

Recursive relation:
e ISLk(i, h) = 1if 3i < j < n+ 1 such that
(ISLk(j, h — 1) = 1 and IsStringinL(A[i..(j — 1]) = 1)
o ISLk(i, h) = 0 otherwise

Alternately:
ISLk(i, h) = max;j<ny1 ISLk(j, h — 1)IsStringinL(A[i..(j — 1)]))

Output: ISLk(1, k)

CS/ECE 374 March 16, 2021 7/



How to order bottom up computation?

(UIUC) CS/ECE 374 8 March 16, 2021  8/34



lterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISLk[1..(n+ 1),0...k]
ISLk[n + 1,0] = TRUE
for (i =1 to n)

ISLKk[i,0] = FALSE

for (h=1 to k)
for (i=1 to n)
ISLK[i, h] = FALSE
for =i+1ton+1)
If (ISLk[j, h — 1] and IsStringinL(A[i..j — 1]))
ISLK[i, h] = TRUE

Break

If (ISLk[1, k] = 1) Output YES
Else Output NO

Running time: O(n*k). Space: O(nk)

(UIUC) CS/ECE 374 9 March 16, 2021  9/34




Another variant

Question: What if we want to check if w € L for some
0 < i< k?Thatis, is w € UK L7?

1

CS/ECE 374 March 16, 2021 10 /34



Part 1l

Edit Distance and Sequence

Alignment

CS/ECE 374 March 16, 2021 11/34



Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

CS/ECE 374 March 16, 2021 12 /34



Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings X1 X2 . .. X, and y1¥2 ... Ym What is a
distance between them?

(UIuQ) CS/ECE 374 12 March 16, 2021 12 /34



Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings X1 X2 . .. X, and y1¥2 ... Ym What is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y.

CS/ECE 374 March 16, 2021 12 /34



Edit distance between two words X and Y is the number of letter
insertions, letter deletions and letter substitutions required to obtain
Y from X.

Example
The edit distance between FOOD and MONEY is at most 4:

FOOD — MOOD — MONOD — MONED — MONEY

(UIuQ) CS/ECE 374 13 March 16, 2021 13 /34



Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word

indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M ONEY

(UIUC) CS/ECE 374 14

March 16, 2021 14 /34



Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M ONEY

Formally, an alignment is a set M of pairs (i, ) such that each index
appears at most once, and there is no “crossing”: i < i’ and i is
matched to j implies i’ is matched to j* > j. In the above example,

this is M = {(1,1), (2,2), (3, 3), (4,5) }.

(UIUC) CS/ECE 374 14 March 16, 2021 14 /34



Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M ONEY

Formally, an alignment is a set M of pairs (i, ) such that each index
appears at most once, and there is no “crossing”: i < i’ and i is
matched to j implies i’ is matched to j* > j. In the above example,
this is M = {(1,1), (2,2), (3, 3), (4,5) }.

Cost of an alignment is the number of columns that do not contain
the same letter twice.

(UIUC) CS/ECE 374 14 March 16, 2021 14 /34



Edit Distance Problem

Problem

Given two words, find the edit distance between them, i.e., an
alignment of smallest cost.

CS/ECE 374 March 16, 2021 15 /34



Applications

@ Spell-checkers and Dictionaries
@ Unix diff
© DNA sequence alignment ... but, we need a new metric

CS/ECE 374 March 16, 2021 16 /34



Similarity Metric

For two strings X and Y/, the cost of alignment M is

© [Gap penalty| For each gap in the alignment, we incur a cost 9.

@ [Mismatch cost| For each pair p and g that have been matched
in M, we incur cost apq; typically oy, = 0.

(UIUC) CS/ECE 374 17 March 16, 2021 17/34



Similarity Metric

For two strings X and Y/, the cost of alignment M is

© [Gap penalty| For each gap in the alignment, we incur a cost 9.

@ [Mismatch cost| For each pair p and g that have been matched
in M, we incur cost apq; typically oy, = 0.

Edit distance is special case when § = apq = 1.

(UIUC) CS/ECE 374 17 March 16, 2021 17/34



An Example

o

O | C

Alternative:

o
o

Cc

(o)
(o)

Cc
Cc

u
u

u
u

r
r

r
r

r
r

r
r

n,|c
n,|c

&

e
e

e
e

Cost = 0 + e

Cost 36

Or a really stupid solution (delete string, insert other string):

O |C|Uu

Cost = 196.

r

r

a

n

Cc | e

(o}

Cc

u\r|rje|n

(UIUC)

CS/ECE 374

18

March 16, 2021

v

18/34



What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion /deletion/change of a single character cost 1 unit?

e
(€2 O N S R

CS/ECE 374 March 16, 2021 19 /34



What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion /deletion/change of a single character cost 1 unit?

373

e
(€2 O N S R

CS/ECE 374 pi March 16, 2021 20/34



What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion /deletion/change of a single character cost 1 unit?

e
(€2 O N S R

CS/ECE 374 March 16, 2021 21/34



Sequence Alignment

Input Given two words X and Y, and gap penalty é and
mismatch costs apgq

Goal Find alignment of minimum cost

CS/ECE 374 March 16, 2021 22/34



Edit distance

Basic observation

Let X = axand Y = By

a, 3: strings.

x and y single characters.

Think about optimal edit distance between X and Y as alignment,
and consider last column of alignment of the two strings:

(87 X (87 X ax
or or

B y By B y

Observation
Prefixes must have optimal alignment!

—

CS/ECE 374 March 16, 2021 23 /34




Try all possibilities

Observation

Let X = x1Xp++*Xm and Y = y1y2 -+ + Yn. If (M, n) are not
matched then either the mth position of X remains unmatched or
the nth position of Y remains unmatched.

Q@ Case x,, and y,, are matched.
©® Pay mismatch cost ay,,y, plus cost of aligning strings
Xp++Xm—1and y1 - Yn_1
@ Case X, is unmatched.
@ Pay gap penalty plus cost of aligning x1 +++Xn—1 and y3 -+ yn
© Case y, is unmatched.
@ Pay gap penalty plus cost of aligning x1 X, and y1 ++ - Yn—1

CS/ECE 374 March 16, 2021 24 /34



Recursive Algorithm

Assume X is stored in array A[l..m] and Y is stored in B[1..n]
Array COST stores cost of matching two chars. Thus COST|a, b]
give the cost of matching character a to character b.

EDIST (A[1..m], B[1..n])
If (m=0) return néd
If (n=0) return md
my = 6 + EDIST(A[1..(m — 1)], B[1..n])
my = 6 + EDIST(A[1..m], B[1..(n — 1)]))
m3 = COST[A[m], B[n]] + EDIST (A[1..(m — 1)], B[1..(n — 1)])
return min(my, my, m3)

CS/ECE 374 March 16, 2021 25 /34



Recursive Algorithm

EDIST (A[1..m], B[1..n])
If (m=0) return nd
If (n=0) return md
my = § + EDIST (A[1..(m — 1)], B[1..n])
my = § + EDIST (A[1..m], B[1..(n — 1)]))
m3 = COST[A[m], B[n]] + EDIST (A[1..(m — 1)], B[1..(n — 1)])
return min(my, my, m3)

@ How many distinct sub-problems will
EDIST (A[1..m], B[1..n]) generate?

CS/ECE 374 pi March 16, 2021 26 /34



Recursive Algorithm

EDIST (A[1..m], B[1..n])
If (m=0) return nd
If (n=0) return md
my = § + EDIST (A[1..(m — 1)], B[1..n])
my = § + EDIST (A[1..m], B[1..(n — 1)]))
m3 = COST[A[m], B[n]] + EDIST (A[1..(m — 1)], B[1..(n — 1)])
return min(my, my, m3)

@ How many distinct sub-problems will
EDIST (A[1..m], B[1..n]) generate? O(nm)

CS/ECE 374 pi March 16, 2021 26 /34



Recursive Algorithm

EDIST (A[1..m], B[1..n])
If (m=0) return nd
If (n=0) return md
my = § + EDIST (A[1..(m — 1)], B[1..n])
my = § + EDIST (A[1..m], B[1..(n — 1)]))
m3 = COST[A[m], B[n]] + EDIST (A[1..(m — 1)], B[1..(n — 1)])
return min(my, my, m3)

@ How many distinct sub-problems will
EDIST (A[1..m], B[1..n]) generate? O(nm)

@ What is the running time if we memoize recursion?

CS/ECE 374 March 16, 2021 26 /34



Recursive Algorithm

EDIST (A[1..m], B[1..n])
If (m=0) return nd
If (n=0) return md
my = § + EDIST (A[1..(m — 1)], B[1..n])
my = § + EDIST (A[1..m], B[1..(n — 1)]))
m3 = COST[A[m], B[n]] + EDIST (A[1..(m — 1)], B[1..(n — 1)])
return min(my, my, m3)

@ How many distinct sub-problems will
EDIST (A[1..m], B[1..n]) generate? O(nm)

@ What is the running time if we memoize recursion? O(nm)
since each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

(UIuQ) CS/ECE 374 26 March 16, 2021 26 /34



Recursive Algorithm

EDIST (A[1..m], B[1..n])
If (m=0) return nd
If (n=0) return md
my = § + EDIST (A[1..(m — 1)], B[1..n])
my = § + EDIST (A[1..m], B[1..(n — 1)]))
m3 = COST[A[m], B[n]] + EDIST (A[1..(m — 1)], B[1..(n — 1)])
return min(my, my, m3)

@ How many distinct sub-problems will
EDIST (A[1..m], B[1..n]) generate? O(nm)

@ What is the running time if we memoize recursion? O(nm)
since each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

@ How much space for memoization?

(UIuQ) CS/ECE 374 26 March 16, 2021 26 /34



Recursive Algorithm

EDIST (A[1..m], B[1..n])
If (m=0) return nd
If (n=0) return md
my = § + EDIST (A[1..(m — 1)], B[1..n])
my = § + EDIST (A[1..m], B[1..(n — 1)]))
m3 = COST[A[m], B[n]] + EDIST (A[1..(m — 1)], B[1..(n — 1)])
return min(my, my, m3)

@ How many distinct sub-problems will
EDIST (A[1..m], B[1..n]) generate? O(nm)

@ What is the running time if we memoize recursion? O(nm)
since each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

@ How much space for memoization? O(nm)

(UIuQ) CS/ECE 374 26 March 16, 2021 26 /34



Naming subproblems and recursive equation

After seeing that number of subproblems is O(nm) we name them
to help us understand the structure better.

CS/ECE 374 March 16, 2021 27 /34



Naming subproblems and recursive equation

After seeing that number of subproblems is O(nm) we name them

to help us understand the structure better.

Optimal Costs

Let Opt(i, ) be optimal cost of aligning x; - - - x; and y;y « - - y;.

Then

Olxy; + Opt(i — 1,5 — 1),
Opt(i,j) = min< § + Opt(i — 1,j),
o+ Opt(i,j - 1)

(UIuQ) CS/ECE 374 27 March 16, 2021

27 /34



Naming subproblems and recursive equation

After seeing that number of subproblems is O(nm) we name them
to help us understand the structure better.

Optimal Costs

Let Opt(i, ) be optimal cost of aligning x; - - - x; and y;y « - - y;.
Then

Olxy; + Opt(i — 1,5 — 1),
Opt(i,j) = min< § + Opt(i — 1,j),
o+ Opt(i,j - 1)

Base Cases: Opt(i,0) =6 - i and Opt(0,/) = -

(UIuQ) CS/ECE 374 27 March 16, 2021 27 /34



How to order bottom up computation?

oeRu

Base case: Opt(i,0) = -i and Opt(0,j) =9d-j
Recursive relation: Fill in row by row (or column by column)

CS/ECE 374 March 16, 2021 28/34



Removing Recursion to obtain Iterative Algorithm

int  M[0..m][0..n]
Initialize all entries of MIJi][j] to oo
return EDIST(A[l..m], B[1..n])

EDIST(A[1..m], B[1..n])
int  MJ[0..m][0..n]
for i=1 to m do MJ[i,0] =ié
for j=1 to n do M[0,j] =jd

for i=1 to m do
for j =1 to n do
Oy, + Ml[i —1][j — 1],
MI[il[j] = min < 6 + M[i — 1][j],
6+ M[i]lj — 1]

March 16, 2021

29 /34

CS/ECE 374



Removing Recursion to obtain Iterative Algorithm

int  M[0..m][0..n]
Initialize all entries of MIJi][j] to oo
return EDIST(A[l..m], B[1..n])

EDIST(A[1..m], B[1..n])
int  MJ[0..m][0..n]
for i=1 to m do MJ[i,0] =ié
for j=1 to n do M[0,j] =jd

for i=1 to m do
for j =1 to n do

Oy + M[i —1][j — 1],
MIillj] = min < 6§ + M[i — 1][j],
6+ M[i]lj — 1]

Running time: O(nm)
Space: O(nm)

CS/ECE 374 March 16, 2021 29/34




Sequence Alignment in Practice

@ Typically the DNA sequences that are aligned are about 10°
letters long!

@ So about 10'? operations and 10 bytes needed
© The killer is the 10GB storage

© Can we reduce space requirements?

CS/ECE 374 March 16, 2021 30/34



Optimizing Space

@ Recall

ax,-yj + M(i - l?j - 1)’
M(i,j) = min< § + M(i — 1,j),
o + M(’a./ - 1)

@ Entries in jth column only depend on (j — 1)st column and
earlier entries in jth column

© Only store the current column and the previous column reusing
space; N(i, Q) stores M(i,j — 1) and N(i, 1) stores M(i, j)

(UIuQC) CS/ECE 374 31 March 16, 2021 31/34



Computing in column order to save space

e

Figure: M(i, ) only depends on previous column values. Keep only two
columns and compute in column order.

CS/ECE 374 March 16, 2021 32/34



Space Efficient Algorithm

for a1l i do N[i,0] = id
for j=1 to n do
N[0,1] = j& (* corresponds to M(0,j) *)
for i=1 to m do
Clxy; + N[i —1,0]
N[i,1] = min< 6 + N[i — 1,1]
d + NI[i, 0]
for i=1 to m do
Copy NI[i,0] = N[i, 1]

Running time is O(mn) and space used is O(2m) = O(m) \

(UIuQ) CS/ECE 374 33 March 16, 2021 33/34




Which data structure?

So far our memoization uses multi-dimensional arrays:
@ Fibonacci numbers, 1-D array
@ Text segmentation, suffix, 1-D array
@ Longest increasing subsequence, suffix+index, 2-D array

e Edit distance, two prefixes, 2-D array

CS/ECE 374 March 16, 2021



Which data structure?

So far our memoization uses multi-dimensional arrays:
@ Fibonacci numbers, 1-D array
@ Text segmentation, suffix, 1-D array
@ Longest increasing subsequence, suffix+index, 2-D array

e Edit distance, two prefixes, 2-D array

Not always true.

CS/ECE 374 March 16, 2021



	More Text Segmentation
	Edit Distance and Sequence Alignment

