
CS/ECE 374: Algorithms & Models of

Computation

More DP: Text Segmentation
and Edit Distance
Lecture 14

(UIUC) CS/ECE 374 1 March 16, 2021 1 / 34



How to design DP algorithms

1 Find a “smart” recursion (The hard part)
1 Formulate the sub-problem
2 so that the number of distinct subproblems is small; polynomial

in the original problem size.

2 Memoization
1 Identify distinct subproblems
2 Choose a memoization data structure
3 Identify dependencies and find a good evaluation order
4 An iterative algorithm replacing recursive calls with array

lookups

(UIUC) CS/ECE 374 2 March 16, 2021 2 / 34



How to design DP algorithms

1 Find a “smart” recursion (The hard part)
1 Formulate the sub-problem
2 so that the number of distinct subproblems is small; polynomial

in the original problem size.

2 Memoization
1 Identify distinct subproblems
2 Choose a memoization data structure
3 Identify dependencies and find a good evaluation order
4 An iterative algorithm replacing recursive calls with array

lookups

(UIUC) CS/ECE 374 2 March 16, 2021 2 / 34



Part I

More Text Segmentation

(UIUC) CS/ECE 374 3 March 16, 2021 3 / 34



A variation

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via
function IsStringinL(string x) that decides whether x
is in L, and non-negative integer k

Goal Decide if w ∈ Lk using IsStringinL(string x) as a
black box sub-routine

Example
Suppose L is English and we have a procedure to check whether a
string/word is in the English dictionary.

Is the string “isthisanenglishsentence” in English5?

Is the string “isthisanenglishsentence” in English4?

Is “asinineat” in English2?

Is “asinineat” in English4?

Is “zibzzzad” in English1?

(UIUC) CS/ECE 374 4 March 16, 2021 4 / 34



Recursive Solution

When is w ∈ Lk?

k = 0: w ∈ Lk iff w = ε
k = 1: w ∈ Lk iff w ∈ L
k > 1: w ∈ Lk if w = uv with u ∈ L and v ∈ Lk−1

Assume w is stored in array A[1..n]

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i ]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO

(UIUC) CS/ECE 374 5 March 16, 2021 5 / 34



Recursive Solution

When is w ∈ Lk?
k = 0: w ∈ Lk iff w = ε
k = 1: w ∈ Lk iff w ∈ L
k > 1: w ∈ Lk if w = uv with u ∈ L and v ∈ Lk−1

Assume w is stored in array A[1..n]

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i ]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO

(UIUC) CS/ECE 374 5 March 16, 2021 5 / 34



Recursive Solution

When is w ∈ Lk?
k = 0: w ∈ Lk iff w = ε
k = 1: w ∈ Lk iff w ∈ L
k > 1: w ∈ Lk if w = uv with u ∈ L and v ∈ Lk−1

Assume w is stored in array A[1..n]

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i ]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO
(UIUC) CS/ECE 374 5 March 16, 2021 5 / 34



Analysis

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i ]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO

How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)?

O(nk)

How much space? O(nk)

Running time? O(n2k)

(UIUC) CS/ECE 374 6 March 16, 2021 6 / 34



Analysis

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i ]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO

How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)

How much space? O(nk)

Running time? O(n2k)

(UIUC) CS/ECE 374 6 March 16, 2021 6 / 34



Analysis

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i ]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO

How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)

How much space?

O(nk)

Running time? O(n2k)

(UIUC) CS/ECE 374 6 March 16, 2021 6 / 34



Analysis

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i ]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO

How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)

How much space? O(nk)

Running time? O(n2k)

(UIUC) CS/ECE 374 6 March 16, 2021 6 / 34



Analysis

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i ]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO

How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)

How much space? O(nk)

Running time?

O(n2k)

(UIUC) CS/ECE 374 6 March 16, 2021 6 / 34



Analysis

IsStringinLk(A[1..n], k):
If (k = 0)

If (n = 0) Output YES

Else Ouput NO

If (k = 1)
Output IsStringinL(A[1..n])

Else

For (i = 1 to n − 1) do

If (IsStringinL(A[1..i ]) and IsStringinLk(A[i + 1..n], k − 1))
Output YES

Output NO

How many distinct sub-problems are generated by
IsStringinLk(A[1..n], k)? O(nk)

How much space? O(nk)

Running time? O(n2k)

(UIUC) CS/ECE 374 6 March 16, 2021 6 / 34



Naming subproblems and recursive equation

ISLk(i , h): a boolean which is 1 if A[i ..n] is in Lh, 0 otherwise

Base case: ISLk(n + 1, 0) = 1 interpreting A[n + 1..n] as ε

Recursive relation:

ISLk(i , h) = 1 if ∃i < j ≤ n + 1 such that
(ISLk(j , h − 1) = 1 and IsStringinL(A[i ..(j − 1]) = 1)

ISLk(i , h) = 0 otherwise

Alternately:
ISLk(i , h) = maxi<j≤n+1 ISLk(j , h − 1)IsStringinL(A[i ..(j − 1)]))

Output: ISLk(1, k)

(UIUC) CS/ECE 374 7 March 16, 2021 7 / 34



Naming subproblems and recursive equation

ISLk(i , h): a boolean which is 1 if A[i ..n] is in Lh, 0 otherwise

Base case: ISLk(n + 1, 0) = 1 interpreting A[n + 1..n] as ε

Recursive relation:

ISLk(i , h) = 1 if ∃i < j ≤ n + 1 such that
(ISLk(j , h − 1) = 1 and IsStringinL(A[i ..(j − 1]) = 1)

ISLk(i , h) = 0 otherwise

Alternately:
ISLk(i , h) = maxi<j≤n+1 ISLk(j , h − 1)IsStringinL(A[i ..(j − 1)]))

Output: ISLk(1, k)

(UIUC) CS/ECE 374 7 March 16, 2021 7 / 34



How to order bottom up computation?

(UIUC) CS/ECE 374 8 March 16, 2021 8 / 34



Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISLk[1..(n + 1), 0...k]
ISLk[n + 1, 0] = TRUE
for (i = 1 to n)

ISLk[i , 0] = FALSE

for (h = 1 to k)
for (i = 1 to n)

ISLk[i , h] = FALSE
for (j = i + 1 to n + 1)

If (ISLk[j , h − 1] and IsStringinL(A[i ..j − 1]))
ISLk[i , h] = TRUE
Break

If (ISLk[1, k] = 1) Output YES

Else Output NO

Running time: O(n2k). Space: O(nk)
(UIUC) CS/ECE 374 9 March 16, 2021 9 / 34



Another variant

Question: What if we want to check if w ∈ Li for some
0 ≤ i ≤ k? That is, is w ∈ ∪k

i=0L
i ?

(UIUC) CS/ECE 374 10 March 16, 2021 10 / 34



Part II

Edit Distance and Sequence
Alignment

(UIUC) CS/ECE 374 11 March 16, 2021 11 / 34



Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y .

(UIUC) CS/ECE 374 12 March 16, 2021 12 / 34



Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y .

(UIUC) CS/ECE 374 12 March 16, 2021 12 / 34



Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y .

(UIUC) CS/ECE 374 12 March 16, 2021 12 / 34



Edit Distance

Definition
Edit distance between two words X and Y is the number of letter
insertions, letter deletions and letter substitutions required to obtain
Y from X .

Example
The edit distance between FOOD and MONEY is at most 4:

FOOD→MOOD→MONOD→MONED→MONEY

(UIUC) CS/ECE 374 13 March 16, 2021 13 / 34



Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i , j) such that each index
appears at most once, and there is no “crossing”: i < i ′ and i is
matched to j implies i ′ is matched to j ′ > j . In the above example,
this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}.
Cost of an alignment is the number of columns that do not contain
the same letter twice.

(UIUC) CS/ECE 374 14 March 16, 2021 14 / 34



Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i , j) such that each index
appears at most once, and there is no “crossing”: i < i ′ and i is
matched to j implies i ′ is matched to j ′ > j . In the above example,
this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}.

Cost of an alignment is the number of columns that do not contain
the same letter twice.

(UIUC) CS/ECE 374 14 March 16, 2021 14 / 34



Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i , j) such that each index
appears at most once, and there is no “crossing”: i < i ′ and i is
matched to j implies i ′ is matched to j ′ > j . In the above example,
this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}.
Cost of an alignment is the number of columns that do not contain
the same letter twice.

(UIUC) CS/ECE 374 14 March 16, 2021 14 / 34



Edit Distance Problem

Problem
Given two words, find the edit distance between them, i.e., an
alignment of smallest cost.

(UIUC) CS/ECE 374 15 March 16, 2021 15 / 34



Applications

1 Spell-checkers and Dictionaries

2 Unix diff

3 DNA sequence alignment . . . but, we need a new metric

(UIUC) CS/ECE 374 16 March 16, 2021 16 / 34



Similarity Metric

Definition
For two strings X and Y , the cost of alignment M is

1 [Gap penalty] For each gap in the alignment, we incur a cost δ.

2 [Mismatch cost] For each pair p and q that have been matched
in M , we incur cost αpq ; typically αpp = 0.

Edit distance is special case when δ = αpq = 1.

(UIUC) CS/ECE 374 17 March 16, 2021 17 / 34



Similarity Metric

Definition
For two strings X and Y , the cost of alignment M is

1 [Gap penalty] For each gap in the alignment, we incur a cost δ.

2 [Mismatch cost] For each pair p and q that have been matched
in M , we incur cost αpq ; typically αpp = 0.

Edit distance is special case when δ = αpq = 1.

(UIUC) CS/ECE 374 17 March 16, 2021 17 / 34



An Example

Example

o c u r r a n c e
o c c u r r e n c e Cost = δ + αae

Alternative:

o c u r r a n c e
o c c u r r e n c e Cost = 3δ

Or a really stupid solution (delete string, insert other string):

o c u r r a n c e
o c c u r r e n c e

Cost = 19δ.

(UIUC) CS/ECE 374 18 March 16, 2021 18 / 34



What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion/deletion/change of a single character cost 1 unit?

374

473

(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

(UIUC) CS/ECE 374 19 March 16, 2021 19 / 34



What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion/deletion/change of a single character cost 1 unit?

373

473

(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

(UIUC) CS/ECE 374 20 March 16, 2021 20 / 34



What is the edit distance between...

What is the minimum edit distance for the following two strings, if
insertion/deletion/change of a single character cost 1 unit?

37

473

(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

(UIUC) CS/ECE 374 21 March 16, 2021 21 / 34



Sequence Alignment

Input Given two words X and Y , and gap penalty δ and
mismatch costs αpq

Goal Find alignment of minimum cost

(UIUC) CS/ECE 374 22 March 16, 2021 22 / 34



Edit distance
Basic observation

Let X = αx and Y = βy
α, β: strings.
x and y single characters.
Think about optimal edit distance between X and Y as alignment,
and consider last column of alignment of the two strings:

α x
β y or

α x
βy or

αx
β y

Observation
Prefixes must have optimal alignment!

(UIUC) CS/ECE 374 23 March 16, 2021 23 / 34



Try all possibilities

Observation
Let X = x1x2 · · · xm and Y = y1y2 · · · yn. If (m, n) are not
matched then either the mth position of X remains unmatched or
the nth position of Y remains unmatched.

1 Case xm and yn are matched.
1 Pay mismatch cost αxmyn plus cost of aligning strings

x1 · · · xm−1 and y1 · · · yn−1

2 Case xm is unmatched.
1 Pay gap penalty plus cost of aligning x1 · · · xm−1 and y1 · · · yn

3 Case yn is unmatched.
1 Pay gap penalty plus cost of aligning x1 · · · xm and y1 · · · yn−1

(UIUC) CS/ECE 374 24 March 16, 2021 24 / 34



Recursive Algorithm

Assume X is stored in array A[1..m] and Y is stored in B[1..n]
Array COST stores cost of matching two chars. Thus COST [a, b]
give the cost of matching character a to character b.

EDIST (A[1..m],B[1..n])
If (m = 0) return nδ
If (n = 0) return mδ
m1 = δ + EDIST (A[1..(m − 1)],B[1..n])
m2 = δ + EDIST (A[1..m],B[1..(n − 1)]))
m3 = COST [A[m],B[n]] + EDIST (A[1..(m − 1)],B[1..(n − 1)])
return min(m1,m2,m3)

(UIUC) CS/ECE 374 25 March 16, 2021 25 / 34



Recursive Algorithm

EDIST (A[1..m],B[1..n])
If (m = 0) return nδ
If (n = 0) return mδ
m1 = δ + EDIST (A[1..(m − 1)],B[1..n])
m2 = δ + EDIST (A[1..m],B[1..(n − 1)]))
m3 = COST [A[m],B[n]] + EDIST (A[1..(m − 1)],B[1..(n − 1)])
return min(m1,m2,m3)

How many distinct sub-problems will
EDIST (A[1..m],B[1..n]) generate?

O(nm)

What is the running time if we memoize recursion? O(nm)
since each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(nm)

(UIUC) CS/ECE 374 26 March 16, 2021 26 / 34



Recursive Algorithm

EDIST (A[1..m],B[1..n])
If (m = 0) return nδ
If (n = 0) return mδ
m1 = δ + EDIST (A[1..(m − 1)],B[1..n])
m2 = δ + EDIST (A[1..m],B[1..(n − 1)]))
m3 = COST [A[m],B[n]] + EDIST (A[1..(m − 1)],B[1..(n − 1)])
return min(m1,m2,m3)

How many distinct sub-problems will
EDIST (A[1..m],B[1..n]) generate? O(nm)

What is the running time if we memoize recursion? O(nm)
since each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(nm)

(UIUC) CS/ECE 374 26 March 16, 2021 26 / 34



Recursive Algorithm

EDIST (A[1..m],B[1..n])
If (m = 0) return nδ
If (n = 0) return mδ
m1 = δ + EDIST (A[1..(m − 1)],B[1..n])
m2 = δ + EDIST (A[1..m],B[1..(n − 1)]))
m3 = COST [A[m],B[n]] + EDIST (A[1..(m − 1)],B[1..(n − 1)])
return min(m1,m2,m3)

How many distinct sub-problems will
EDIST (A[1..m],B[1..n]) generate? O(nm)

What is the running time if we memoize recursion?

O(nm)
since each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(nm)

(UIUC) CS/ECE 374 26 March 16, 2021 26 / 34



Recursive Algorithm

EDIST (A[1..m],B[1..n])
If (m = 0) return nδ
If (n = 0) return mδ
m1 = δ + EDIST (A[1..(m − 1)],B[1..n])
m2 = δ + EDIST (A[1..m],B[1..(n − 1)]))
m3 = COST [A[m],B[n]] + EDIST (A[1..(m − 1)],B[1..(n − 1)])
return min(m1,m2,m3)

How many distinct sub-problems will
EDIST (A[1..m],B[1..n]) generate? O(nm)

What is the running time if we memoize recursion? O(nm)
since each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(nm)

(UIUC) CS/ECE 374 26 March 16, 2021 26 / 34



Recursive Algorithm

EDIST (A[1..m],B[1..n])
If (m = 0) return nδ
If (n = 0) return mδ
m1 = δ + EDIST (A[1..(m − 1)],B[1..n])
m2 = δ + EDIST (A[1..m],B[1..(n − 1)]))
m3 = COST [A[m],B[n]] + EDIST (A[1..(m − 1)],B[1..(n − 1)])
return min(m1,m2,m3)

How many distinct sub-problems will
EDIST (A[1..m],B[1..n]) generate? O(nm)

What is the running time if we memoize recursion? O(nm)
since each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization?

O(nm)

(UIUC) CS/ECE 374 26 March 16, 2021 26 / 34



Recursive Algorithm

EDIST (A[1..m],B[1..n])
If (m = 0) return nδ
If (n = 0) return mδ
m1 = δ + EDIST (A[1..(m − 1)],B[1..n])
m2 = δ + EDIST (A[1..m],B[1..(n − 1)]))
m3 = COST [A[m],B[n]] + EDIST (A[1..(m − 1)],B[1..(n − 1)])
return min(m1,m2,m3)

How many distinct sub-problems will
EDIST (A[1..m],B[1..n]) generate? O(nm)

What is the running time if we memoize recursion? O(nm)
since each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(nm)

(UIUC) CS/ECE 374 26 March 16, 2021 26 / 34



Naming subproblems and recursive equation

After seeing that number of subproblems is O(nm) we name them
to help us understand the structure better.

Optimal Costs

Let Opt(i , j) be optimal cost of aligning x1 · · · xi and y1 · · · yj .
Then

Opt(i , j) = min


αxi yj + Opt(i − 1, j − 1),

δ + Opt(i − 1, j),
δ + Opt(i , j − 1)

Base Cases: Opt(i , 0) = δ · i and Opt(0, j) = δ · j

(UIUC) CS/ECE 374 27 March 16, 2021 27 / 34



Naming subproblems and recursive equation

After seeing that number of subproblems is O(nm) we name them
to help us understand the structure better.

Optimal Costs

Let Opt(i , j) be optimal cost of aligning x1 · · · xi and y1 · · · yj .
Then

Opt(i , j) = min


αxi yj + Opt(i − 1, j − 1),

δ + Opt(i − 1, j),
δ + Opt(i , j − 1)

Base Cases: Opt(i , 0) = δ · i and Opt(0, j) = δ · j

(UIUC) CS/ECE 374 27 March 16, 2021 27 / 34



Naming subproblems and recursive equation

After seeing that number of subproblems is O(nm) we name them
to help us understand the structure better.

Optimal Costs

Let Opt(i , j) be optimal cost of aligning x1 · · · xi and y1 · · · yj .
Then

Opt(i , j) = min


αxi yj + Opt(i − 1, j − 1),

δ + Opt(i − 1, j),
δ + Opt(i , j − 1)

Base Cases: Opt(i , 0) = δ · i and Opt(0, j) = δ · j

(UIUC) CS/ECE 374 27 March 16, 2021 27 / 34



How to order bottom up computation?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
.

..
.

i, j

m, n

α
x
i x

j
δ

δ

0, 0

Base case: Opt(i , 0) = δ · i and Opt(0, j) = δ · j
Recursive relation: Fill in row by row (or column by column)

(UIUC) CS/ECE 374 28 March 16, 2021 28 / 34



Removing Recursion to obtain Iterative Algorithm

int M[0..m][0..n]
Initialize all entries of M[i ][j ] to ∞
return EDIST (A[1..m],B[1..n])

EDIST (A[1..m],B[1..n])
int M[0..m][0..n]
for i = 1 to m do M[i , 0] = iδ
for j = 1 to n do M[0, j ] = jδ

for i = 1 to m do
for j = 1 to n do

M[i ][j ] = min


αxi yj + M[i − 1][j − 1],

δ + M[i − 1][j ],
δ + M[i ][j − 1]

Running time: O(nm)
Space: O(nm)

(UIUC) CS/ECE 374 29 March 16, 2021 29 / 34



Removing Recursion to obtain Iterative Algorithm

int M[0..m][0..n]
Initialize all entries of M[i ][j ] to ∞
return EDIST (A[1..m],B[1..n])

EDIST (A[1..m],B[1..n])
int M[0..m][0..n]
for i = 1 to m do M[i , 0] = iδ
for j = 1 to n do M[0, j ] = jδ

for i = 1 to m do
for j = 1 to n do

M[i ][j ] = min


αxi yj + M[i − 1][j − 1],

δ + M[i − 1][j ],
δ + M[i ][j − 1]

Running time: O(nm)
Space: O(nm)

(UIUC) CS/ECE 374 29 March 16, 2021 29 / 34



Sequence Alignment in Practice

1 Typically the DNA sequences that are aligned are about 105

letters long!

2 So about 1010 operations and 1010 bytes needed

3 The killer is the 10GB storage

4 Can we reduce space requirements?

(UIUC) CS/ECE 374 30 March 16, 2021 30 / 34



Optimizing Space

1 Recall

M(i , j) = min


αxi yj + M(i − 1, j − 1),

δ + M(i − 1, j),
δ + M(i , j − 1)

2 Entries in j th column only depend on (j − 1)st column and
earlier entries in j th column

3 Only store the current column and the previous column reusing
space; N(i , 0) stores M(i , j − 1) and N(i , 1) stores M(i , j)

(UIUC) CS/ECE 374 31 March 16, 2021 31 / 34



Computing in column order to save space

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
.

..
.

i, j

m, n

α
x
i x

j
δ

δ

0, 0

Figure: M(i , j) only depends on previous column values. Keep only two
columns and compute in column order.

(UIUC) CS/ECE 374 32 March 16, 2021 32 / 34



Space Efficient Algorithm

for all i do N[i , 0] = iδ
for j = 1 to n do

N[0, 1] = jδ (* corresponds to M(0, j) *)

for i = 1 to m do

N[i , 1] = min


αxi yj + N[i − 1, 0]

δ + N[i − 1, 1]

δ + N[i , 0]
for i = 1 to m do

Copy N[i , 0] = N[i , 1]

Analysis

Running time is O(mn) and space used is O(2m) = O(m)

(UIUC) CS/ECE 374 33 March 16, 2021 33 / 34



Which data structure?

So far our memoization uses multi-dimensional arrays:

Fibonacci numbers, 1-D array

Text segmentation, suffix, 1-D array

Longest increasing subsequence, suffix+index, 2-D array

Edit distance, two prefixes, 2-D array

Not always true.

(UIUC) CS/ECE 374 34 March 16, 2021 34 / 34



Which data structure?

So far our memoization uses multi-dimensional arrays:

Fibonacci numbers, 1-D array

Text segmentation, suffix, 1-D array

Longest increasing subsequence, suffix+index, 2-D array

Edit distance, two prefixes, 2-D array

Not always true.

(UIUC) CS/ECE 374 34 March 16, 2021 34 / 34


	More Text Segmentation
	Edit Distance and Sequence Alignment

