
CS/ECE 374: Algorithms & Models of
Computation

Backtracking
Lecture 12

(UIUC) CS/ECE 374 1 March 9, 2021 1 / 26

 



Recursion types

1 Divide and Conquer: Problem reduced to multiple
independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median
selection.

2 Backtracking

(UIUC) CS/ECE 374 2 March 9, 2021 2 / 26

HI

ME
I l l l
444444



Part I

N Queens Problem

(UIUC) CS/ECE 374 3 March 9, 2021 3 / 26



N Queens Problem

Definition
Place n queens on an n ⇥ n board so that no two queens are
attacking each other.

that is, no two queens are in the same row, same column, or same
diagonal.

(UIUC) CS/ECE 374 4 March 9, 2021 4 / 26



N Queens Problem

Definition
Place n queens on an n ⇥ n board so that no two queens are
attacking each other.

that is, no two queens are in the same row, same column, or same
diagonal.

(UIUC) CS/ECE 374 4 March 9, 2021 4 / 26



N Queens Problem

Definition
Place n queens on an n ⇥ n board so that no two queens are
attacking each other.

that is, no two queens are in the same row, same column, or same
diagonal.

(UIUC) CS/ECE 374 4 March 9, 2021 4 / 26



N Queens Problem

Brute-force algorithm:
Try all combinations of n positions.

Methodical brute-force:
No two queens on the same row, so place a queen in one row at a
time.

(UIUC) CS/ECE 374 5 March 9, 2021 5 / 26



N Queens Problem

Brute-force algorithm:
Try all combinations of n positions.

Methodical brute-force:
No two queens on the same row, so place a queen in one row at a
time.

(UIUC) CS/ECE 374 5 March 9, 2021 5 / 26



N Queens Problem

(UIUC) CS/ECE 374 6 March 9, 2021 6 / 26

yo



N Queens Problem

Base case

when any position in the row is attacked by a queen on an
earlier row, recursion terminates.

Or when all n queens are placed.

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

Let the recursion fairy make all remaining decisions

(UIUC) CS/ECE 374 7 March 9, 2021 7 / 26



N Queens Problem

Base case

when any position in the row is attacked by a queen on an
earlier row, recursion terminates.

Or when all n queens are placed.

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

Let the recursion fairy make all remaining decisions

(UIUC) CS/ECE 374 7 March 9, 2021 7 / 26



N Queens Problem

How do we redefine the problem to make recursion work?

The recursion does not solve the n � 1 queens problem

We need to place the r -th queen so that it is not attacked by a
queen on an earlier row

The recursive subproblem:
Input = r � 1 queens placed in earlier rows
Place the remaining n � r + 1 queens, one on each row
Recurse by increasing r

(UIUC) CS/ECE 374 8 March 9, 2021 8 / 26



N Queens Problem

How do we redefine the problem to make recursion work?

The recursion does not solve the n � 1 queens problem

We need to place the r -th queen so that it is not attacked by a
queen on an earlier row

The recursive subproblem:
Input = r � 1 queens placed in earlier rows
Place the remaining n � r + 1 queens, one on each row
Recurse by increasing r

(UIUC) CS/ECE 374 8 March 9, 2021 8 / 26



N Queens Problem

How do we redefine the problem to make recursion work?

The recursion does not solve the n � 1 queens problem

We need to place the r -th queen so that it is not attacked by a
queen on an earlier row

The recursive subproblem:
Input = r � 1 queens placed in earlier rows
Place the remaining n � r + 1 queens, one on each row
Recurse by increasing r

(UIUC) CS/ECE 374 8 March 9, 2021 8 / 26



N Queens Problem

How do we redefine the problem to make recursion work?

The recursion does not solve the n � 1 queens problem

We need to place the r -th queen so that it is not attacked by a
queen on an earlier row

The recursive subproblem:
Input = r � 1 queens placed in earlier rows
Place the remaining n � r + 1 queens, one on each row
Recurse by increasing r

(UIUC) CS/ECE 374 8 March 9, 2021 8 / 26



N Queens Problem

(UIUC) CS/ECE 374 9 March 9, 2021 9 / 26



Recursion types

1 Divide and Conquer: Problem reduced to multiple
independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median
selection.

Each sub-problem is a fraction smaller.

2 Backtracking: A sequence of decision problems. Recursion
tries all possibilities at each step.

Each subproblem is only a constant smaller, e.g. from n to
n � 1.
e.g. T (n) = n ·T (n � 1), T (1) = n, hence T (n) = O(nn).
e.g. T (n) = 2 · T (n � 1) + O(1), hence T (n) = O(2n).

(UIUC) CS/ECE 374 10 March 9, 2021 10 / 26



Recursion types

1 Divide and Conquer: Problem reduced to multiple
independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median
selection.

Each sub-problem is a fraction smaller.
2 Backtracking: A sequence of decision problems. Recursion

tries all possibilities at each step.

Each subproblem is only a constant smaller, e.g. from n to
n � 1.

e.g. T (n) = n ·T (n � 1), T (1) = n, hence T (n) = O(nn).
e.g. T (n) = 2 · T (n � 1) + O(1), hence T (n) = O(2n).

(UIUC) CS/ECE 374 10 March 9, 2021 10 / 26



Recursion types

1 Divide and Conquer: Problem reduced to multiple
independent sub-problems.

Examples: Merge sort, quick sort, multiplication, median
selection.

Each sub-problem is a fraction smaller.
2 Backtracking: A sequence of decision problems. Recursion

tries all possibilities at each step.

Each subproblem is only a constant smaller, e.g. from n to
n � 1.
e.g. T (n) = n ·T (n � 1), T (1) = n, hence T (n) = O(nn).
e.g. T (n) = 2 · T (n � 1) + O(1), hence T (n) = O(2n).

(UIUC) CS/ECE 374 10 March 9, 2021 10 / 26



Part II

Text Segmentation

(UIUC) CS/ECE 374 11 March 9, 2021 11 / 26



Problem

Input A string w 2 ⌃⇤ and access to a language L ✓ ⌃⇤ via
function IsStrInL(string x) that decides whether x is
in L

Goal Decide if w 2 L
⇤ using IsStrInL(string x) as a black

box sub-routine

Example
Suppose L is English and we have a procedure to check whether a
string/word is in the English dictionary.

Is the string “isthisanenglishsentence” in English
⇤?

Is “stampstamp” in English
⇤?

Is “zibzzzad” in English
⇤?

(UIUC) CS/ECE 374 12 March 9, 2021 12 / 26



Problem

Input A string w 2 ⌃⇤ and access to a language L ✓ ⌃⇤ via
function IsStrInL(string x) that decides whether x is
in L

Goal Decide if w 2 L
⇤ using IsStrInL(string x) as a black

box sub-routine

Example
Suppose L is English and we have a procedure to check whether a
string/word is in the English dictionary.

Is the string “isthisanenglishsentence” in English
⇤?

Is “stampstamp” in English
⇤?

Is “zibzzzad” in English
⇤?

(UIUC) CS/ECE 374 12 March 9, 2021 12 / 26



Text Segmentation

Backtracking

Changes the problem into a sequence of decision problems

(UIUC) CS/ECE 374 13 March 9, 2021 13 / 26



Text Segmentation

Backtracking

Changes the problem into a sequence of decision problems

(UIUC) CS/ECE 374 13 March 9, 2021 13 / 26



Text Segmentation

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

(UIUC) CS/ECE 374 14 March 9, 2021 14 / 26



Text Segmentation

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

(UIUC) CS/ECE 374 14 March 9, 2021 14 / 26



Text Segmentation

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

(UIUC) CS/ECE 374 14 March 9, 2021 14 / 26



Text Segmentation

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

(UIUC) CS/ECE 374 14 March 9, 2021 14 / 26



Text Segmentation

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

(UIUC) CS/ECE 374 14 March 9, 2021 14 / 26



Text Segmentation

Backtracking

Changes the problem into a sequence of decision problems

Each tries all possibilities for the current decision

Let the recursion fairy make all remaining decisions

(UIUC) CS/ECE 374 15 March 9, 2021 15 / 26



Text segmentation

Only the su�x matters.

Base case

zero-length string

(UIUC) CS/ECE 374 16 March 9, 2021 16 / 26



Text segmentation

Only the su�x matters.

Base case

zero-length string

(UIUC) CS/ECE 374 16 March 9, 2021 16 / 26



Recursive Solution

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n � 1) do

If (IsStrInL(A[1..i ]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

(UIUC) CS/ECE 374 17 March 9, 2021 17 / 26



Part III

Longest Increasing Subsequence

(UIUC) CS/ECE 374 18 March 9, 2021 18 / 26



Sequences

Definition
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is
number of elements in the list.

Definition
ai1, . . . , aik is a subsequence of a1, . . . , an if
1  i1 < i2 < . . . < ik  n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is
non-decreasing if a1  a2  . . .  an. Similarly decreasing and
non-increasing.

(UIUC) CS/ECE 374 19 March 9, 2021 19 / 26



Sequences

Definition
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is
number of elements in the list.

Definition
ai1, . . . , aik is a subsequence of a1, . . . , an if
1  i1 < i2 < . . . < ik  n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is
non-decreasing if a1  a2  . . .  an. Similarly decreasing and
non-increasing.

(UIUC) CS/ECE 374 19 March 9, 2021 19 / 26



Sequences

Definition
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is
number of elements in the list.

Definition
ai1, . . . , aik is a subsequence of a1, . . . , an if
1  i1 < i2 < . . . < ik  n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is
non-decreasing if a1  a2  . . .  an. Similarly decreasing and
non-increasing.

(UIUC) CS/ECE 374 19 March 9, 2021 19 / 26



Sequences
Example...

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1, 9
2 Subsequence of above sequence: 5, 2, 1

3 Increasing sequence: 3, 5, 9, 17, 54
4 Decreasing sequence: 34, 21, 7, 5, 1
5 Increasing subsequence of the first sequence: 2, 7, 9.

(UIUC) CS/ECE 374 20 March 9, 2021 20 / 26



Sequences
Example...

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1, 9
2 Subsequence of above sequence: 5, 2, 1
3 Increasing sequence: 3, 5, 9, 17, 54
4 Decreasing sequence: 34, 21, 7, 5, 1

5 Increasing subsequence of the first sequence: 2, 7, 9.

(UIUC) CS/ECE 374 20 March 9, 2021 20 / 26



Sequences
Example...

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1, 9
2 Subsequence of above sequence: 5, 2, 1
3 Increasing sequence: 3, 5, 9, 17, 54
4 Decreasing sequence: 34, 21, 7, 5, 1
5 Increasing subsequence of the first sequence: 2, 7, 9.

(UIUC) CS/ECE 374 20 March 9, 2021 20 / 26



Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1
2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
3 Longest increasing subsequence: 3, 5, 7, 8

(UIUC) CS/ECE 374 21 March 9, 2021 21 / 26



Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1
2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
3 Longest increasing subsequence: 3, 5, 7, 8

(UIUC) CS/ECE 374 21 March 9, 2021 21 / 26



Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

1 Case 1: max without A[n] which is LIS(A[1..(n � 1)])
2 Case 2: max among sequences that contain A[n] in which case

recursion is not so clear.

Observation
For second case we want to find a subsequence in A[1..(n � 1)]
that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x .

(UIUC) CS/ECE 374 22 March 9, 2021 22 / 26



Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1 Case 1: max without A[n] which is LIS(A[1..(n � 1)])

2 Case 2: max among sequences that contain A[n] in which case
recursion is not so clear.

Observation
For second case we want to find a subsequence in A[1..(n � 1)]
that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x .

(UIUC) CS/ECE 374 22 March 9, 2021 22 / 26



Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1 Case 1: max without A[n] which is LIS(A[1..(n � 1)])
2 Case 2: max among sequences that contain A[n] in which case

recursion is

not so clear.

Observation
For second case we want to find a subsequence in A[1..(n � 1)]
that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x .

(UIUC) CS/ECE 374 22 March 9, 2021 22 / 26



Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1 Case 1: max without A[n] which is LIS(A[1..(n � 1)])
2 Case 2: max among sequences that contain A[n] in which case

recursion is not so clear.

Observation
For second case we want to find a subsequence in A[1..(n � 1)]
that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x .

(UIUC) CS/ECE 374 22 March 9, 2021 22 / 26



Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1 Case 1: max without A[n] which is LIS(A[1..(n � 1)])
2 Case 2: max among sequences that contain A[n] in which case

recursion is not so clear.

Observation
For second case we want to find a subsequence in A[1..(n � 1)]
that is restricted to numbers less than A[n].

This suggests that a
more general problem is LIS smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x .

(UIUC) CS/ECE 374 22 March 9, 2021 22 / 26



Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1 Case 1: max without A[n] which is LIS(A[1..(n � 1)])
2 Case 2: max among sequences that contain A[n] in which case

recursion is not so clear.

Observation
For second case we want to find a subsequence in A[1..(n � 1)]
that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x .

(UIUC) CS/ECE 374 22 March 9, 2021 22 / 26



Recursive Approach

LIS smaller(A[1..n], x) : length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n � 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n � 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],1)

(UIUC) CS/ECE 374 23 March 9, 2021 23 / 26



Part IV

From Backtracking to DP

(UIUC) CS/ECE 374 24 March 9, 2021 24 / 26



Running time analysis of Text Segmentation

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n � 1) do

If (IsStrInL(A[1..i ]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

T (n)  O(n) +
n�1X

i=1

T (i)

Running time: O(2n)

(UIUC) CS/ECE 374 25 March 9, 2021 25 / 26



Running time analysis of Text Segmentation

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n � 1) do

If (IsStrInL(A[1..i ]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

T (n)  O(n) +
n�1X

i=1

T (i)

Running time: O(2n)

(UIUC) CS/ECE 374 25 March 9, 2021 25 / 26

II
I IM

0h7 KID II
0 P n



Running time analysis of Text Segmentation

T (n)  O(n) +
n�1X

i=1

T (i)

Running time: O(2n)

However, how many su�xes are there?

O(n)

Di↵erent past decision can lead to the same su�x.

(UIUC) CS/ECE 374 26 March 9, 2021 26 / 26



Running time analysis of Text Segmentation

T (n)  O(n) +
n�1X

i=1

T (i)

Running time: O(2n)

However, how many su�xes are there? O(n)

Di↵erent past decision can lead to the same su�x.

(UIUC) CS/ECE 374 26 March 9, 2021 26 / 26



Running time analysis of Text Segmentation

T (n)  O(n) +
n�1X

i=1

T (i)

Running time: O(2n)

However, how many su�xes are there? O(n)

Di↵erent past decision can lead to the same su�x.

(UIUC) CS/ECE 374 26 March 9, 2021 26 / 26


