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We will learn

1 How to ask the recursion fairy to solve the problem for us.

2 How to analyze the running time of a recursive algorithm.
3 Recursion in action

1 Tower of Hanoi puzzle

2 Merge sort

3 Quick sort
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Recursion

How to think about it

Recursion = Induction
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Part I

Tower of Hanoi
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Tower of Hanoi

Algorithms Lecture 1: Recursion

subproblems. Eventually, the recursive reductions must stop with an elementary base case that
is solved by some other method; otherwise, the algorithm will never terminate. This finiteness
condition is usually easy to satisfy, but we should always be wary of ‘obvious’ recursive algorithms
that actually recurse forever.

1.1 Tower of Hanoi

The Tower of Hanoi puzzle was first published by the French mathematician François Éduoard Ana-
tole Lucas in 1883, under the pseudonym ‘N. Claus (de Siam)’ (an anagram of ‘Lucas d’Amiens’).
The following year, the French scientist Henri de Parville described the puzzle with the following
remarkable story:3

In the great temple at Benares beneath the dome which marks the centre of the world, rests a
brass plate in which are fixed three diamond needles, each a cubit high and as thick as the body
of a bee. On one of these needles, at the creation, God placed sixty-four discs of pure gold, the
largest disc resting on the brass plate, and the others getting smaller and smaller up to the top
one. This is the Tower of Bramah. Day and night unceasingly the priests transfer the discs from
one diamond needle to another according to the fixed and immutable laws of Bramah, which
require that the priest on duty must not move more than one disc at a time and that he must
place this disc on a needle so that there is no smaller disc below it. When the sixty-four discs
shall have been thus transferred from the needle on which at the creation God placed them to
one of the other needles, tower, temple, and Brahmins alike will crumble into dust, and with a
thunderclap the world will vanish.

Of course, being good computer scientists, we read this story and immediately substitute n for the
hardwired constant sixty-four.4 How can we move a tower of n disks from one needle to another,
using a third needles as an occasional placeholder, never placing any disk on top of a smaller disk?

The Tower of Hanoi puzzle

The trick to solving this puzzle is to think recursively. Instead of trying to solve the entire puzzle
all at once, let’s concentrate on moving just the largest disk. We can’t move it at the beginning,
because all the other disks are covering it; we have to move those n � 1 disks to the third needle
before we can move the nth disk. And then after we move the nth disk, we have to move those
n� 1 disks back on top of it. So now all we have to figure out is how to. . .

3This English translation is from W. W. Rouse Ball and H. S. M. Coxeter’s book Mathematical Recreations and Essays.
4Recognizing that the underlying mathematical abstraction would be unchanged, we may also freely use ‘cookies’ and

‘dowels’ instead of ‘discs’ and ‘needles’. Ha ha. . . underlying!

2

Move stack of n disks from peg 0 to peg 2, one disk at a time.
Rule: cannot put a larger disk on a smaller disk.
Question: what is a strategy and how many moves does it take?
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Tower of Hanoi via Recursion
Algorithms Lecture 1: Recursion

STOP!! That’s it! We’re done! We’ve successfully reduced the n-disk Tower of Hanoi problem to
two instances of the (n � 1)-disk Tower of Hanoi problem, which we can gleefully hand off to the
Recursion Fairy (or, to carry the original story further, to the junior monks at the temple).

recursion

recursion

The Tower of Hanoi algorithm; ignore everything but the bottom disk

Our algorithm does make one subtle but important assumption: there is a largest disk. In other
words, our recursive algorithm works for any n ⇥ 1, but it breaks down when n = 0. We must
handle that base case directly. Fortunately, the monks at Benares, being good Buddhists, are quite
adept at moving zero disks from one needle to another.

The base case for the Tower of Hanoi algorithm; there is no bottom disk

While it’s tempting to think about how all those smaller disks get moved—in other words,
what happens when the recursion is unfolded—it’s not necessary. In fact, for more complicated
problems, opening up the recursion is a distraction. Our only task is to reduce the problem to one
or more simpler instances, or to solve the problem directly if such a reduction is impossible. Our
algorithm is trivially correct when n = 0. For any n ⇥ 1, the Recursion Fairy correctly moves (or
more formally, the inductive hypothesis implies that our algorithm correctly moves) the top n � 1
disks, so our algorithm is clearly correct.

Here’s the recursive Hanoi algorithm in more typical pseudocode.

HANOI(n, src, dst, tmp):
if n > 0

HANOI(n, src, tmp, dst)
move disk n from src to dst
HANOI(n, tmp, dst, src)

Let T (n) denote the number of moves required to transfer n disks—the running time of our
algorithm. Our vacuous base case implies that T (0) = 0, and the more general recursive algorithm
implies that T (n) = 2T (n � 1) + 1 for any n ⇥ 1. The annihilator method lets us quickly derive a
closed form solution T (n) = 2n � 1 . In particular, moving a tower of 64 disks requires 264 � 1 =
18,446,744,073,709,551,615 individual moves. Thus, even at the impressive rate of one move per
second, the monks at Benares will be at work for approximately 585 billion years before, with a
thunderclap, the world will vanish.

The Hanoi algorithm has two very simple non-recursive formulations, for those of us who do
not have an army of assistants to take care of smaller piles. Let’s label the needles 0, 1, and 2,

3
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Recursive Algorithm

Hanoi(n, src, dest, tmp):
Hanoi(n � 1, src, tmp, dest)
Move disk n from src to dest
Hanoi(n � 1, tmp, dest, src)
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Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n > 0) then

Hanoi(n � 1, src, tmp, dest)
Move disk n from src to dest
Hanoi(n � 1, tmp, dest, src)

Proof of correctness.
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Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n > 0) then

Hanoi(n � 1, src, tmp, dest)
Move disk n from src to dest
Hanoi(n � 1, tmp, dest, src)

Running time analysis.
T (n): time to move n disks via recursive strategy

T (n) = 2T (n � 1) + 1 n > 1 and T (1) = 1
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Analysis

T (n) = 2T (n � 1) + 1

= 2
2T (n � 2) + 2 + 1

= . . .

= 2
iT (n � i) + 2

i�1
+ 2

i�2
+ . . . + 1

= . . .

= 2
n�1T (1) + 2

n�2
+ . . . + 1

= 2
n�1

+ 2
n�2

+ . . . + 1

= (2
n � 1)/(2 � 1) = 2

n � 1
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Part II

Merge Sort
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Sorting

Input Given an array of n elements

Goal Rearrange them in ascending order
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Merge Sort [von Neumann]

MergeSort

1 Input: Array A[1 . . . n]

A L G O R I T H M S
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m = bn/2c
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Merge Sort [von Neumann]

MergeSort

1 Input: Array A[1 . . . n]
A L G O R I T H M S

2 Divide into subarrays A[1 . . .m] and A[m + 1 . . . n], where
m = bn/2c

A L G O R I T H M S

3 Recursively MergeSort A[1 . . .m] and A[m + 1 . . . n]
A G L O R H I M S T

4 Merge the sorted arrays

A G H I L M O R S T
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Merging Sorted Arrays

1 Use a new array B to store the merged array
2 Scan A[1 . . .m] and A[m + 1 . . . n] from left-to-right, storing

elements in B in order

A G L O R H I M S T
A

G H I L M O R S T
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Merging Sorted Arrays

1 Use a new array B to store the merged array
2 Scan A[1 . . .m] and A[m + 1 . . . n] from left-to-right, storing

elements in B in order

A G L O R H I M S T
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Formal Code

Algorithms Lecture �: Recursion [Fa’��]

M����S���(A[1 .. n]):
if n> 1

m� �n/2�
M����S���(A[1 .. m])
M����S���(A[m+ 1 .. n])
M����(A[1 .. n], m)

M����(A[1 .. n], m):
i� 1; j� m+ 1
for k� 1 to n

if j > n
B[k]� A[i]; i� i + 1

else if i > m
B[k]� A[ j]; j� j + 1

else if A[i]< A[ j]
B[k]� A[i]; i� i + 1

else
B[k]� A[ j]; j� j + 1

for k� 1 to n
A[k]� B[k]

To prove that this algorithm is correct, we apply our old friend induction twice, first to the
M���� subroutine then to the top-level M�������� algorithm.

• We prove M���� is correct by induction on n� k + 1, which is the total size of the two
sorted subarrays A[i .. m] and A[ j .. n] that remain to be merged into B[k .. n] when the kth
iteration of the main loop begins. There are five cases to consider. Yes, five.

– If k > n, the algorithm correctly merges the two empty subarrays by doing absolutely
nothing. (This is the base case of the inductive proof.)

– If i � m and j > n, the subarray A[ j .. n] is empty. Because both subarrays are sorted,
the smallest element in the union of the two subarrays is A[i]. So the assignment
B[k]� A[i] is correct. The inductive hypothesis implies that the remaining subarrays
A[i + 1 .. m] and A[ j .. n] are correctly merged into B[k+ 1 .. n].

– Similarly, if i > m and j � n, the assignment B[k] � A[ j] is correct, and The
Recursion Fairy correctly merges—sorry, I mean the inductive hypothesis implies
that the M���� algorithm correctly merges—the remaining subarrays A[i .. m] and
A[ j + 1 .. n] into B[k+ 1 .. n].

– If i � m and j � n and A[i]< A[ j], then the smallest remaining element is A[i]. So
B[k] is assigned correctly, and the Recursion Fairy correctly merges the rest of the
subarrays.

– Finally, if i � m and j � n and A[i] � A[ j], then the smallest remaining element is
A[ j]. So B[k] is assigned correctly, and the Recursion Fairy correctly does the rest.

• Now we prove M����S��� correct by induction; there are two cases to consider. Yes, two.

– If n� 1, the algorithm correctly does nothing.
– Otherwise, the Recursion Fairy correctly sorts—sorry, I mean the induction hypothesis

implies that our algorithm correctly sorts—the two smaller subarrays A[1 .. m] and
A[m+1 .. n], after which they are correctly M����d into a single sorted array (by the
previous argument).

What’s the running time? Because the M����S��� algorithm is recursive, its running
time will be expressed by a recurrence. M���� clearly takes linear time, because it’s a simple
for-loop with constant work per iteration. We immediately obtain the following recurrence for
M����S���:

T (n) = T
�
�n/2�
�
+ T
�
�n/2�
�
+O(n).

�

(UIUC) CS/ECE 374 15 March 1, 2021 15 / 24



Proving Correctness

Obvious way to prove correctness of recursive algorithm:

induction!

Easy to show by induction on n that MergeSort is correct if you
assume Merge is correct.
How do we prove that Merge is correct? Also by induction!
One way is to rewrite Merge into a recursive version.
For algorithms with loops one comes up with a natural loop
invariant that captures all the essential properties and then we
prove the loop invariant by induction on the index of the loop.

At the start of iteration k the following hold:

B[1..k] contains the smallest k elements of A correctly sorted.
B[1..k] contains the elements of A[1..(i � 1)] and
A[(m + 1)..(j � 1)].
No element of A is modified.
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Running Time

T (n): time for merge sort to sort an n element array

T (n) = T (bn/2c) + T (dn/2e) + cn

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want
to know f (n) such that T (n) = ⇥(f (n)).

1 T (n) = O(f (n)) - upper bound
2 T (n) = ⌦(f (n)) - lower bound

(UIUC) CS/ECE 374 17 March 1, 2021 17 / 24



Running Time

T (n): time for merge sort to sort an n element array

T (n) = T (bn/2c) + T (dn/2e) + cn

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want
to know f (n) such that T (n) = ⇥(f (n)).

1 T (n) = O(f (n)) - upper bound
2 T (n) = ⌦(f (n)) - lower bound

(UIUC) CS/ECE 374 17 March 1, 2021 17 / 24



Running Time

T (n): time for merge sort to sort an n element array

T (n) = T (bn/2c) + T (dn/2e) + cn

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want
to know f (n) such that T (n) = ⇥(f (n)).

1 T (n) = O(f (n)) - upper bound
2 T (n) = ⌦(f (n)) - lower bound

(UIUC) CS/ECE 374 17 March 1, 2021 17 / 24



Solving Recurrences: Some Techniques

1 Know some basic math: geometric series, logarithms,
exponentials, elementary calculus

2 Expand the recurrence and spot a pattern and use simple math
3 Recursion tree method — imagine the computation as a tree
4 Guess and verify — useful for proving upper and lower bounds

even if not tight bounds
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Recursion Trees
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Part III

Quick Sort
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Quick Sort

Quick Sort [Hoare]
1 Pick a pivot element from array
2 Split array into 3 subarrays: those smaller than pivot, those

larger than pivot, and the pivot itself.

Linear scan of array does
it. Time is O(n)

3 Recursively sort the subarrays, and concatenate them.
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Quick Sort: Example

1 array: 16, 12, 14, 20, 5, 3, 18, 19, 1
2 pivot: 16
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Time Analysis

1 Let k be the rank of the chosen pivot. Then,
T (n) = T (k � 1) + T (n � k) + O(n)
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Time Analysis

1 Let k be the rank of the chosen pivot. Then,
T (n) = T (k � 1) + T (n � k) + O(n)

2 If k = dn/2e then T (n) =
T (dn/2e � 1) + T (bn/2c) + O(n)  2T (n/2) + O(n).
Then, T (n) = O(n log n).
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Time Analysis

1 Let k be the rank of the chosen pivot. Then,
T (n) = T (k � 1) + T (n � k) + O(n)

2 If k = dn/2e then T (n) =
T (dn/2e � 1) + T (bn/2c) + O(n)  2T (n/2) + O(n).
Then, T (n) = O(n log n).

1 Theoretically, median can be found in linear time.
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Time Analysis

1 Let k be the rank of the chosen pivot. Then,
T (n) = T (k � 1) + T (n � k) + O(n)

2 If k = dn/2e then T (n) =
T (dn/2e � 1) + T (bn/2c) + O(n)  2T (n/2) + O(n).
Then, T (n) = O(n log n).

1 Theoretically, median can be found in linear time.

3 Typically, pivot is the first or last element of array. Then,

T (n) = max
1kn

(T (k � 1) + T (n � k) + O(n))

In the worst case T (n) = T (n � 1) + O(n), which means
T (n) = O(n2

). Happens if array is already sorted and pivot is
always first element.
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Recursion Trees
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