CS/ECE 374: Algorithms & Models of
Computation

Recursion
Lecture 10

CS/ECE 374 1 March 1, 2021 1/24

WERYIREETS

© How to ask the recursion fairy to solve the problem for us.

CS/ECE 374 March 1, 2021 2 /24

WERYIREETS

© How to ask the recursion fairy to solve the problem for us.

@ How to analyze the running time of a recursive algorithm.

CS/ECE 374 March 1, 2021 2 /24

We will learn

© How to ask the recursion fairy to solve the problem for us.
@ How to analyze the running time of a recursive algorithm.

© Recursion in action

® Tower of Hanoi puzzle
@ Merge sort
© Quick sort

CS/ECE 374 March 1, 2021 2 /24

Recursion

How to think about it

Recursion = Induction

CS/ECE 374 March 1, 2021 3 /24

Part |

Tower of Hanoi

CS/ECE 374 March 1, 2021 4/24

The Tower of Hanoi puzzle

Move stack of n disks from peg 0 to peg 2, one disk at a time.
Rule: cannot put a larger disk on a smaller disk.
Question: what is a strategy and how many moves does it take?

(UIUQ) CS/ECE 374 5 March 1, 2021 5/24

Tower of Hanoi via Recursion

2z e |
L= 4

The Tower of Hanoi algorithm; ignore everything but the bottom disk

CS/ECE 374 March 1, 2021 6/24

Recursive Algorithm

Hanoi(n, src, dest, tmp):
Hanoi(n — 1, src, tmp, dest)
Move disk nm from src to dest
Hanoi(n — 1, tmp, dest, src)

CS/ECE 374 March 1, 2021 7/24

Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n > 0) then
Hanoi(n — 1, src, tmp, dest)
Move disk nm from src to dest
Hanoi(n — 1, tmp, dest, src)

CS/ECE 374 March 1, 2021 8/24

Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n>0) then —
Hanoi(n — 1, src, tmp, dest)

Move disk nm from src to dest

Hanoi(n — 1, tmp, dest, src) |[———

Proof of correctness.

CS/ECE 374 March 1, 2021 8/24

Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n > 0) then
Hanoi(n — 1, src, tmp, dest)
Move disk nm from src to dest
Hanoi(n — 1, tmp, dest, src)

Running time analysis.
T (n): time to move n disks via recursive strategy

CS/ECE 374 March 1, 2021 9 /24

Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n > 0) then
Hanoi(n — 1, src, tmp, dest)
Move disk nm from src to dest
Hanoi(n — 1, tmp, dest, src)

-+ |

Running time analysis.
T (n): time to move n disks via recursive strategy

_&V\ — 1’§:\-\

T(n)=2T(n— I)CI-’_B n>1 and T(1) =1

T(n@tz 2 (T?n/-l{—?)) = =

ey @ESE=D
Tiy+1 = 2" (Th41) =2

2" (T

(UIUC) CS/ECE 374 9

March 1, 2021 9/24

T(n)

2T(n—1) +1
2°T(n—2)+2+1

2'T(n—i) 42714272 4... 41
2" IT(1) 42" 24+ ... 41

2n—lpon—2. 41
2" -1)/2-1)=2"-1

CS/ECE 374 March 1, 2021

Part |l

Merge Sort

CS/ECE 374 March 1, 2021 11/24

Sorting

Input Given an array of n elements

Goal Rearrange them in ascending order

CS/ECE 374 March 1, 2021 12/ 24

Merge Sort [von Neumann]

MergeSort

@ Input: Array A[1...n]

ALGORITHMS

CS/ECE 374 March 1, 2021 13 /24

Merge Sort [von Neumann]

MergeSort

@ Input: Array A[1...n]

ALGORITHMS

@ Divide into subarrays A[1...m] and Alm + 1... n], where
m= |n/2]

ALGOR ITHMS

CS/ECE 374 March 1, 2021

13 /24

Merge Sort [von Neumann]

MergeSort

Q@ Input: Array A[1...n]
ALGORITHMS

@ Divide into subarrays A[1...m] and Alm + 1... n], where
m= |n/2]

ALGOR ITHMS

© Recursively MergeSort A[l1...m] and Aim+1...n]
AGLOR HIMST

CS/ECE 374 March 1, 2021 13 /24

Merge Sort [von Neumann]

MergeSort

Q@ Input: Array A[1...n]
ALGORITHMS

@ Divide into subarrays A[1...m] and Alm + 1... n], where
m= |n/2]|

ALGOR ITHMS

© Recursively MergeSort A[l...m] and Afm+1...n]
AGLOR HIMST

© Merge the sorted arrays
AGHILMORST

CS/ECE 374 March 1, 2021 13 /24

Merging Sorted Arrays

© Use a new array B to store the merged array

@ Scan A[1...m] and Alm + 1... n] from left-to-right, storing
elements in B in order

AGLOR HIMST
A

CS/ECE 374 March 1, 2021 14/ 24

Merging Sorted Arrays

© Use a new array B to store the merged array

@ Scan A[1...m] and Alm + 1... n] from left-to-right, storing
elements in B in order

AGLOR HIMST
AG

CS/ECE 374 March 1, 2021 14 / 24

Merging Sorted Arrays

© Use a new array B to store the merged array

@ Scan A[1...m] and Alm + 1... n] from left-to-right, storing
elements in B in order

AGLOR HIMST
AGH

CS/ECE 374 March 1, 2021 14 / 24

Merging Sorted Arrays

© Use a new array B to store the merged array

@ Scan A[1...m] and Alm + 1... n] from left-to-right, storing
elements in B in order

AGLOR HIMST
AGHI

CS/ECE 374 March 1, 2021 14 / 24

Merging Sorted Arrays

© Use a new array B to store the merged array

@ Scan A[1...m] and Alm + 1... n] from left-to-right, storing
elements in B in order

AGLOR HIMST
AGHILMORST

CS/ECE 374 March 1, 2021 14 / 24

Formal Code

MERGESORT(A[1..n]):
ifn>1
m <« |n/2]
MERGESORT(A[1..m])
MERGESORT(A[m + 1..n])
MERGE(A[1..n],m)

CS/ECE 374

MERGE(A[1..n],m):
ie—1; jeem+1
fork<—1ton
ifj>n
B[k]<—A[i]; i—i+1
elseifi >m
Blk]—A[j]; j<j+1
else if A[i] < A[j]
B[k]<—A[i]; i—i+1
else
Blk] < Alj]; j<Jj+1

fork<—1ton
Alk] < B[k]

March 1, 2021

15 /24

Proving Correctness

Obvious way to prove correctness of recursive algorithm:

CS/ECE 374 March 1, 2021 16 / 24

Proving Correctness

Obvious way to prove correctness of recursive algorithm: induction!

@ Easy to show by induction on n that MergeSort is correct if you
assume Merge is correct.

@ How do we prove that Merge is correct?

CS/ECE 374 March 1, 2021 16 / 24

Proving Correctness

Obvious way to prove correctness of recursive algorithm: induction!

@ Easy to show by induction on n that MergeSort is correct if you
assume Merge is correct.

@ How do we prove that Merge is correct? Also by induction!
@ One way is to rewrite Merge into a recursive version.

@ For algorithms with loops one comes up with a natural loop
invariant that captures all the essential properties and then we
prove the loop invariant by induction on the index of the loop.

CS/ECE 374 March 1, 2021 16 / 24

Proving Correctness

Obvious way to prove correctness of recursive algorithm: induction!

@ Easy to show by induction on n that MergeSort is correct if you
assume Merge is correct.

@ How do we prove that Merge is correct? Also by induction!

@ One way is to rewrite Merge into a recursive version.

@ For algorithms with loops one comes up with a natural loop
invariant that captures all the essential properties and then we
prove the loop invariant by induction on the index of the loop.

At the start of iteration k the following hold:

e BJ[1..k] contains the smallest k elements of A correctly sorted.

e BJ[1..k] contains the elements of A[1..(# — 1)] and
Al(m+1)..(j — 1)].

@ No element of A is modified.

(UIUC) CS/ECE 374 March 1, 2021 16 /24

T (n): time for merge sort to sort an n element array

CS/ECE 374 March 1, 2021 17 /24

T (n): time for merge sort to sort an n element array

T(n) = T(ln/2]) + T([n/2]) + cn

CS/ECE 374 March 1, 2021 17 /24

T (n): time for merge sort to sort an n element array

T(n) = T(ln/2]) + T([n/2]) + cn

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want
to know f(n) such that T(n) = O(f(n)).

@ T (n) = O(f(n)) - upper bound

@ T(n) =Q(f(n)) - lower bound

CS/ECE 374 March 1, 2021 17 /24

Solving Recurrences: Some Techniques

© Know some basic math: geometric series, logarithms,
exponentials, elementary calculus

© Expand the recurrence and spot a pattern and use simple math
© Recursion tree method — imagine the computation as a tree

© Guess and verify — useful for proving upper and lower bounds
even if not tight bounds

CS/ECE 374 March 1, 2021 18 /24

Recursion Trees

Part Il

Quick Sort

CS/ECE 374 March 1, 2021 20 / 24

Quick Sort

Quick Sort [Hoare]

@ Pick a pivot element from array

© Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

© Recursively sort the subarrays, and concatenate them.

CS/ECE 374 March 1, 2021 21/24

Quick Sort

Quick Sort [Hoare]

@ Pick a pivot element from array

© Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

© Recursively sort the subarrays, and concatenate them.

CS/ECE 374 March 1, 2021 21/24

Quick Sort

Quick Sort [Hoare]

@ Pick a pivot element from array

© Split array into 3 subarrays: those smaller than pivot, those

larger than pivot, and the pivot itself. Linear scan of array does
it. Time is O(n)

© Recursively sort the subarrays, and concatenate them.

CS/ECE 374 March 1, 2021 21/24

Quick Sort

Quick Sort [Hoare]

@ Pick a pivot element from array

© Split array into 3 subarrays: those smaller than pivot, those

larger than pivot, and the pivot itself. Linear scan of array does
it. Time is O(n)

© Recursively sort the subarrays, and concatenate them.

CS/ECE 374 March 1, 2021 21/24

Quick Sort: Example

@ array: 16, 12, 14, 20, 5, 3, 18, 19, 1

CS/ECE 374 22 March 1, 2021 22 /24

Time Analysis

© Let k be the rank of the chosen pivot. Then,
T(n)=T(k—1)+ T(n— k) + O(n)

CS/ECE 374 March 1, 2021 23 /24

Time Analysis

© Let k be the rank of the chosen pivot. Then,
T(n)=T(k—1)+ T(n— k) + O(n)

Q@ If k= [n/2] then T(n) =
T([n/2] =1)+ T(Ln/2]) + O(n) < 2T(n/2) + O(n).

Then, T(n) = O(nlog n).
g |
%)
N

/ N\
Vo Vi ékf%k

CS/ECE 374 23 March 1, 2021 23/24

Time Analysis

© Let k be the rank of the chosen pivot. Then,
T(n)=T(k—1)+ T(n— k) + O(n)

Q@ If k =[n/2] then T(n) =
T([n/2] —1) + T([n/2]) + O(n) < 2T(n/2) + O(n).
Then, T(n) = O(nlog n).

@ Theoretically, median can be found in linear time.

CS/ECE 374 March 1, 2021 23/24

Time Analysis

© Let k be the rank of the chosen pivot. Then,
T(n)=T(k—1)+ T(n— k) + O(n)
Q@ If k =[n/2] then T(n) =
T([n/2] —1) + T([n/2]) + O(n) < 2T(n/2) + O(n).
Then, T(n) = O(nlog n).
@ Theoretically, median can be found in linear time.

© Typically, pivot is the first or last element of array. Then,

T(n) = 1r<nka<x (T(k — ll+ T(n— k) + O(n))
<k< 5 =
In the worst case T(n) = T(n — 1) + O(n), which means
T (n) = O(n?). Happens if array is already sorted and pivot is
always first element.

CS/ECE 374 March 1, 2021 23/24

Recursion Trees

CS/ECE 374 March 1, 2021 24 /24

