
1

Pre-lecture brain teaser

So far we’ve only discussed deterministic Turing machines.
However, similar to the relationship between DFAs and NFAs,
there exists non-determistic Turing computation follows a
non-deterministic path. So based on your knowledge of
DFAs/NFAs and Turing machines I have two questions:

• What does a
non-deterministic Turing
machine look like?

• What languages are accept
by non-deterministic
Turing machines?

1

CS/ECE-374: Lecture 10 - Midterm 1 Review

Lecturer: Nickvash Kani
Chat moderator: Samir Khan
February 25, 2021

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

So far we’ve only discussed deterministic Turing machines.
However, similar to the relationship between DFAs and NFAs,
there exists non-determistic Turing computation follows a
non-deterministic path. So based on your knowledge of
DFAs/NFAs and Turing machines I have two questions:

• What does a
non-deterministic Turing
machine look like?

• What languages are accept
by non-deterministic
Turing machines?

2

Pre-lecture brain teaser

So far we’ve only discussed deterministic Turing machines.
However, similar to the relationship between DFAs and NFAs,
there exists non-determistic Turing computation follows a
non-deterministic path. So based on your knowledge of
DFAs/NFAs and Turing machines I have two questions:

• What does a
non-deterministic Turing
machine look like?

• What languages are accept
by non-deterministic
Turing machines?

2

Pre-lecture brain teaser

So far we’ve only discussed deterministic Turing machines.
However, similar to the relationship between DFAs and NFAs,
there exists non-determistic Turing computation follows a
non-deterministic path. So based on your knowledge of
DFAs/NFAs and Turing machines I have two questions:

• What does a
non-deterministic Turing
machine look like?

• What languages are accept
by non-deterministic
Turing machines?

2

Exam Content

Including but not limited to:

• Languages and strings
• Regular expressions
• Deterministic finite automata
• Non-deterministic finite automata
• Equivalence of DFAs/NFAs/RegEx
• Regular language closure properties
• Fooling Sets

3

Strings

String Definitions

Definition

1. A string/word over Σ is a finite sequence of symbols over
Σ. For example, ‘0101001’, ‘string’, ‘〈moveback〉〈rotate90〉’

2. ε is the empty string.
3. The length of a string w (denoted by |w|) is the number of
symbols in w. For example, |101| = 3, |ε| = 0

4. For integer n ≥ 0, Σn is set of all strings over Σ of length n.
Σ∗ is the set of all strings over Σ.

5. concatenation defined recursively :
• xy = y if x = ε

• xy = a(wy) if x = aw

4

Induction on strings

Inductive proofs on strings

Inductive proofs on strings and related problems follow
inductive definitions.

Definition
The reverse wR of a string w is defined as follows:

• wR = ε if w = ε

• wR = xRa if w = ax for some a ∈ Σ and string x

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR.

Example: (dog·cat)R = (cat)R·(dog)R = tacgod.

5

Inductive proofs on strings

Inductive proofs on strings and related problems follow
inductive definitions.

Definition
The reverse wR of a string w is defined as follows:

• wR = ε if w = ε

• wR = xRa if w = ax for some a ∈ Σ and string x

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR.

Example: (dog·cat)R = (cat)R·(dog)R = tacgod.

5

Principle of mathematical induction

Induction is a way to prove statements of the form ∀n ≥ 0,P(n)
where P(n) is a statement that holds for integer n.

Example: Prove that
∑n

i=0 i = n(n+ 1)/2 for all n.

Induction template:

• Base case: Prove P(0)
• Induction hypothesis: Let k > 0 be an arbitrary integer.
Assume that P(n) holds for any n ≤ k.

• Induction Step: Prove that P(n) holds, for n = k+ 1.

6

By induction on |u|

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR.

Proof by induction on |u| means that we are proving the
following.

Base case: Let u be an arbitrary string of length 0. u = ε since
there is only one such string. Then

(uv)R = (εv)R = vR = vRε = vRεR = vRuR

Induction hypothesis: ∀n ≥ 0, for any string u of length n:

For all strings v ∈ Σ∗, (uv)R = vRuR.

No assumption about v, hence statement holds for all v ∈ Σ∗.

7

By induction on |u|

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR.

Proof by induction on |u| means that we are proving the
following.

Base case: Let u be an arbitrary string of length 0. u = ε since
there is only one such string. Then

(uv)R = (εv)R = vR = vRε = vRεR = vRuR

Induction hypothesis: ∀n ≥ 0, for any string u of length n:

For all strings v ∈ Σ∗, (uv)R = vRuR.

No assumption about v, hence statement holds for all v ∈ Σ∗.

7

By induction on |u|

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR.

Proof by induction on |u| means that we are proving the
following.

Base case: Let u be an arbitrary string of length 0. u = ε since
there is only one such string. Then

(uv)R = (εv)R = vR = vRε = vRεR = vRuR

Induction hypothesis: ∀n ≥ 0, for any string u of length n:

For all strings v ∈ Σ∗, (uv)R = vRuR.

No assumption about v, hence statement holds for all v ∈ Σ∗.

7

Inductive step

• Let u be an arbitrary string of length n > 0. Assume
inductive hypothesis holds for all strings w of length < n.

• Since |u| = n > 0 we have u = ay for some string y with
|y| < n and a ∈ Σ.

• Then

(uv)R = ((ay)v)R

= (a(yv))R

= (yv)RaR

= (vRyR)aR

= vR(yRaR)
= vR(ay)R

= vRuR

8

Inductive step

• Let u be an arbitrary string of length n > 0. Assume
inductive hypothesis holds for all strings w of length < n.

• Since |u| = n > 0 we have u = ay for some string y with
|y| < n and a ∈ Σ.

• Then

(uv)R =

((ay)v)R

= (a(yv))R

= (yv)RaR

= (vRyR)aR

= vR(yRaR)
= vR(ay)R

= vRuR

8

Inductive step

• Let u be an arbitrary string of length n > 0. Assume
inductive hypothesis holds for all strings w of length < n.

• Since |u| = n > 0 we have u = ay for some string y with
|y| < n and a ∈ Σ.

• Then

(uv)R = ((ay)v)R

= (a(yv))R

= (yv)RaR

= (vRyR)aR

= vR(yRaR)
= vR(ay)R

= vRuR
8

Induction on |v|

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR.

Proof by induction on |v| means that we are proving the
following.

Induction hypothesis: ∀n ≥ 0, for any string v of length n:

For all strings u ∈ Σ∗, (uv)R = vRuR.

Base case: Let v be an arbitrary string of length 0. v = ε since
there is only one such string. Then

(uv)R = (uε)R = uR = εuR = εRuR = vRuR

9

Induction on |v|

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR.

Proof by induction on |v| means that we are proving the
following.

Induction hypothesis: ∀n ≥ 0, for any string v of length n:

For all strings u ∈ Σ∗, (uv)R = vRuR.

Base case: Let v be an arbitrary string of length 0. v = ε since
there is only one such string. Then

(uv)R = (uε)R = uR = εuR = εRuR = vRuR

9

Induction on |v|

Theorem
Prove that for any strings u, v ∈ Σ∗, (uv)R = vRuR.

Proof by induction on |v| means that we are proving the
following.

Induction hypothesis: ∀n ≥ 0, for any string v of length n:

For all strings u ∈ Σ∗, (uv)R = vRuR.

Base case: Let v be an arbitrary string of length 0. v = ε since
there is only one such string. Then

(uv)R = (uε)R = uR = εuR = εRuR = vRuR

9

Inductive step

• Let v be an arbitrary string of length n > 0. Assume
inductive hypothesis holds for all strings w of length < n.

• Since |v| = n > 0 we have v = ay for some string y with
|y| < n and a ∈ Σ.

• Then

(uv)R = (u(ay))R

= ((ua)y)R

= yR(ua)R

= ??

Cannot simplify (ua)R using inductive hypothesis. Can simplify
if we extend base case to include n = 0 and n = 1. However,
n = 1 itself requires induction on |u|!

10

Inductive step

• Let v be an arbitrary string of length n > 0. Assume
inductive hypothesis holds for all strings w of length < n.

• Since |v| = n > 0 we have v = ay for some string y with
|y| < n and a ∈ Σ.

• Then

(uv)R = (u(ay))R

= ((ua)y)R

= yR(ua)R

= ??

Cannot simplify (ua)R using inductive hypothesis. Can simplify
if we extend base case to include n = 0 and n = 1. However,
n = 1 itself requires induction on |u|!

10

Regular expressions

Inductive Definition

A regular expression r over an alphabet Σ is one of the
following:
Base cases:

• ∅ denotes the language ∅
• ε denotes the language {ε}.
• a denote the language {a}.

Inductive cases: If r1 and r2 are regular expressions denoting
languages R1 and R2 respectively then,

• (r1 + r2) denotes the language R1 ∪ R2
• (r1·r2) = r1·r2 = (r1r2) denotes the language R1R2
• (r1)∗ denotes the language R∗1

11

Inductive Definition

A regular expression r over an alphabet Σ is one of the
following:
Base cases:

• ∅ denotes the language ∅
• ε denotes the language {ε}.
• a denote the language {a}.

Inductive cases: If r1 and r2 are regular expressions denoting
languages R1 and R2 respectively then,

• (r1 + r2) denotes the language R1 ∪ R2
• (r1·r2) = r1·r2 = (r1r2) denotes the language R1R2
• (r1)∗ denotes the language R∗1

11

Regular Languages vs Regular Expressions

Regular Languages Regular Expressions

∅ regular ∅ denotes ∅
{ε} regular ε denotes {ε}
{a} regular for a ∈ Σ a denote {a}
R1 ∪ R2 regular if both are r1 + r2 denotes R1 ∪ R2
R1R2 regular if both are r1·r2 denotes R1R2
R∗ is regular if R is r∗ denote R∗

Regular expressions denote regular languages — they explicitly
show the operations that were used to form the language

12

Practice Problem [True/False]

The language
{
0i1j0k1`

∣∣∣ i, j, k, ` ≥ 0
}
is not regular.

13

Practice Problem

What is the regular expression for:

• All strings except 11.

• All strings that do not contain 000 as a subsequence.

14

Practice Problem

What is the regular expression for:

• All strings except 11.
• All strings that do not contain 000 as a subsequence.

14

Deterministic finite automata

Formal Tuple Notation

Definition
A deterministic finite automata (DFA) M = (Q,Σ, δ, s,A) is a five
tuple where

• Q is a finite set whose elements are called states,
• Σ is a finite set called the input alphabet,
• δ : Q× Σ → Q is the transition function,
• s ∈ Q is the start state,
• A ⊆ Q is the set of accepting/final states.

Common alternate notation: q0 for start state, F for final states.

15

DFA Notation

M =
(︷︸︸︷

Q , Σ︸︷︷︸ ,
︷︸︸︷
δ , s︸︷︷︸ ,

︷︸︸︷
A

)

16

Example

q0start q1

1
0

1

0

• Q =

• Σ =

• δ =

• s =
• A =

17

Practice Problem

Draw the DFA representing the regular language:
L =

{
0i1j0k1`

∣∣ i, j, k, ` ≥ 0
}

18

Non-deterministic Finite automata

Formal definition of language accepted by M

Definition
The language L(M) accepted by a DFA M = (Q,Σ, δ, s,A) is

{w ∈ Σ∗ | δ∗(s,w) ∈ A}.

19

Another Way to look at NFAs

Is 010101 accepted?

0
q0start q1 q2 q3

0,1

1 0

ε

1

1
q0start q1 q2 q3

0,1

1 0

ε

1

0
q0start q1 q2 q3

0,1

1 0

ε

1

1
q0start q1 q2 q3

0,1

1 0

ε

1

0
q0start q1 q2 q3

0,1

1 0

ε

1

1
q0start q1 q2 q3

0,1

1 0

ε

1

20

Another Way to look at NFAs

Is 010100 accepted?

0
q0start q1 q2 q3

0,1

1 0

ε

1

1
q0start q1 q2 q3

0,1

1 0

ε

1

0
q0start q1 q2 q3

0,1

1 0

ε

1

1
q0start q1 q2 q3

0,1

1 0

ε

1

0
q0start q1 q2 q3

0,1

1 0

ε

1

0
q0start q1 q2 q3

0,1

1 0

ε

1

21

Practice Problem [True/False]

Let M = (Σ,Q, s,A, δ) and M′ = (Σ,Q, s,Q \ A, δ) be arbitrary
DFAs with identical alphabets, states, starting states, and
transition functions, but with complementary accepting states.
Then L(M) ∪ L(M′) = Σ∗.

22

Practice Problem [True/False]

Let M = (Σ,Q, s,A, δ) and M′ = (Σ,Q, s,Q \ A, δ) be arbitrary
DFAs with identical alphabets, states, starting states, and
transition functions, but with complementary accepting states.
Then L(M) ∪ L(M′) = Σ′.

23

Closure of Regular languages

Regular languages are closed under:

•
•
•

24

Thompson’s algorithm

Given two NFAs s and t:

L = Ls ∩ Lt

L = Ls ∪ Lt L = (Ls)∗

25

Example - Closure

Are regular languages closed under intersection L1 ∩ L2?

26

Practice Problem [True/False]

If L1, L2, . . . are all regular languages, then L =
⋃∞
i=0 Li is regular.

27

Fooling Sets

Fooling Sets

Definition
For a language L over Σ a set of strings F (could be infinite) is a
fooling set or distinguishing set for L if every two distinct
strings x, y ∈ F are distinguishable.

Example: F = {0i | i ≥ 0} is a fooling set for the language
L = {0k1k | k ≥ 0}.

Theorem
Suppose F is a fooling set for L. If F is finite then there is no
DFA M that accepts L with less than |F| states.

28

Fooling Sets

Definition
For a language L over Σ a set of strings F (could be infinite) is a
fooling set or distinguishing set for L if every two distinct
strings x, y ∈ F are distinguishable.

Example: F = {0i | i ≥ 0} is a fooling set for the language
L = {0k1k | k ≥ 0}.

Theorem
Suppose F is a fooling set for L. If F is finite then there is no
DFA M that accepts L with less than |F| states.

28

Fooling Sets

Definition
For a language L over Σ a set of strings F (could be infinite) is a
fooling set or distinguishing set for L if every two distinct
strings x, y ∈ F are distinguishable.

Example: F = {0i | i ≥ 0} is a fooling set for the language
L = {0k1k | k ≥ 0}.

Theorem
Suppose F is a fooling set for L. If F is finite then there is no
DFA M that accepts L with less than |F| states.

28

Practice Problem [True/False]

For all languages L, if L is regular, then L does not have an
infinite fooling set.

29

Practice Problem [True/False]

The language
{
0i1j0k1`

∣∣∣ i ≥ j ≥ k ≥ ` ≥ 0
}
is not regular.

30

Practice Problem [True/False]

The strings 010 and 101 are distinguishable by the language
L = {x ∈ Σ∗ | |x| is even}.

31

	Strings
	Induction on strings
	Regular expressions
	Deterministic finite automata
	Non-deterministic Finite automata
	Closure of Regular languages
	Fooling Sets

