

Pre-lecture brain teaser

So far we've only discussed deterministic Turing machines.
However, similar to the relationship between DFAs and NFAs,
there exists non-determistic Turing computation follows a
non-deterministic path. So based on your knowledge of
DFAs/NFAs and Turing machines | have two questions:

Deterministic Hon-Deterministic 0 V\/hat doeS a
v e non-deterministic Turing
i e S . .
i 2N machine look like?

o X b TN - What languages are accept
v l / by non-deterministic
+/ :](:c[' ar * —— accept

Turing machines?

CS/ECE-374: Lecture 10 - Midterm 1 Review

Lecturer: Nickvash Kani
Chat moderator: Samir Khan

February 25, 2021

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

So far we've only discussed deterministic Turing machines.
However, similar to the relationship between DFAs and NFAs,
there exists non-determistic Turing computation follows a
non-deterministic path. So based on your knowledge of
DFAs/NFAs and Turing machines | have two questions:

Pre-lecture brain teaser

So far we've only discussed deterministic Turing machines.
However, similar to the relationship between DFAs and NFAs,
there exists non-determistic Turing computation follows a
non-deterministic path. So based on your knowledge of
DFAs/NFAs and Turing machines | have two questions:

Deterministic Hon-Deterministic o V\/hat doeS a
4 e non-deterministic Turing
i ey B : .
2N machine look like?

Pre-lecture brain teaser

So far we've only discussed deterministic Turing machines.
However, similar to the relationship between DFAs and NFAs,
there exists non-determistic Turing computation follows a
non-deterministic path. So based on your knowledge of
DFAs/NFAs and Turing machines | have two questions:

Deterministic Hon-Deterministic 0 V\/hat doeS a
v e non-deterministic Turing
i e S . .
i 2N machine look like?

o X b TN - What languages are accept
v l / by non-deterministic
+/ :](:c[' ar * —— accept

Turing machines?

Exam Content

Including but not limited to:

- Languages and strings

- Regular expressions

- Deterministic finite automata

- Non-deterministic finite automata

- Equivalence of DFAs/NFAs/RegEx

- Regular language closure properties
- Fooling Sets

Strings

String Definitions

Definition

1. Astring/word over X is a finite sequence of symbols over
Y. For example, ‘0101007, ‘string’, ‘(moveback)(rotate90)’

2. e is the empty string.
3. The length of a string w (denoted by |w/|) is the number of
symbols in w. For example, [101] =3, |¢| =0
4. Forintegern > 0, X" is set of all strings over X of length n.
Y * is the set of all strings over X.
5. concatenation defined recursively :
cxy=yifx=¢
- xy =a(wy) if x =aw

Induction on strings

Inductive proofs on strings

Inductive proofs on strings and related problems follow
inductive definitions.

Definition
The reverse wR of a string w is defined as follows:

-uwlR=cifw=c¢

- wk = xRa if w = ax for some a € ¥ and string x

Inductive proofs on strings

Inductive proofs on strings and related problems follow
inductive definitions.

Definition
The reverse wR of a string w is defined as follows:

-uwlR=cifw=c¢

- wk = xRa if w = ax for some a € ¥ and string x

Theorem
Prove that for any strings u,v € ¥, (uv)f = vRuR.

Example: (dog-cat)f = (cat)R«(dog)R = tacgod.

Principle of mathematical induction

Induction is a way to prove statements of the form ¥n > 0, P(n)
where P(n) is a statement that holds for integer n.

Example: Prove that Y7 ;i = n(n +1)/2 for all n.

Induction template:

- Base case: Prove P(0)

- Induction hypothesis: Let k > 0 be an arbitrary integer.
Assume that P(n) holds for any n < k.

- Induction Step: Prove that P(n) holds, forn =k + 1.

By induction on |u|

Theorem
Prove that for any strings u,v € ¥*, (uv)f = vRuf.

Proof by induction on |u| means that we are proving the
following.

Base case: Let u be an arbitrary string of length 0. u = € since
there is only one such string. Then

(UV)R = (ev)R = VR = vRe = vReR = vRUR

By induction on |u|

Theorem
Prove that for any strings u,v € ¥*, (uv)f = vRuf.

Proof by induction on |u| means that we are proving the
following.

Base case: Let u be an arbitrary string of length 0. u = € since
there is only one such string. Then

(UV)R = (ev)R = VR = vRe = vReR = vRUR

Induction hypothesis: VYn > 0, for any string u of length n:

For all strings v € &*, (uv)f = vRuR.

By induction on |u|

Theorem
Prove that for any strings u,v € ¥*, (uv)f = vRuf.

Proof by induction on |u| means that we are proving the
following.

Base case: Let u be an arbitrary string of length 0. u = € since
there is only one such string. Then

(UV)R = (ev)R = VR = vRe = vReR = vRUR
Induction hypothesis: VYn > 0, for any string u of length n:
For all strings v € &*, (uv)f = vRuR.

No assumption about v, hence statement holds for all v € ©*.

Inductive step

- Let u be an arbitrary string of length n > 0. Assume
inductive hypothesis holds for all strings w of length < n.

- Since |u| = n > 0 we have u = ay for some string y with
ly| <nandaekX.

- Then

Inductive step

- Let u be an arbitrary string of length n > 0. Assume
inductive hypothesis holds for all strings w of length < n.

- Since |u| = n > 0 we have u = ay for some string y with
ly| <nandaekX.

- Then

(u)f =

Inductive step

- Let u be an arbitrary string of length n > 0. Assume
inductive hypothesis holds for all strings w of length < n.

- Since |u| = n > 0 we have u = ay for some string y with
ly| <nandaekX.

- Then

(w)® = ((ay)v)"

Induction on |v|

Theorem
Prove that for any strings u,v € ¥*, (uv)f = vRuf.

Proof by induction on |v| means that we are proving the
following.

Induction on |v|

Theorem
Prove that for any strings u,v € ¥*, (uv)f = vRuf.

Proof by induction on |v| means that we are proving the
following.

Induction hypothesis: VYn > 0, for any string v of length n:

For all strings u € T*, (uv)f = vRuk.

Induction on |v|

Theorem
Prove that for any strings u,v € ¥*, (uv)f = vRuf.

Proof by induction on |v| means that we are proving the
following.

Induction hypothesis: VYn > 0, for any string v of length n:

For all strings u € T*, (uv)f = vRuk.

Base case: Let v be an arbitrary string of length 0. v = € since
there is only one such string. Then

(uv)f = (ue)f = uf = e = ful = VRUR

Inductive step

- Let v be an arbitrary string of length n > 0. Assume
inductive hypothesis holds for all strings w of length < n.

- Since |v| = n > 0 we have v = ay for some string y with
ly| <nandaekX.

- Then

)t = (u(ay)

10

Inductive step

- Let v be an arbitrary string of length n > 0. Assume
inductive hypothesis holds for all strings w of length < n.

- Since |v| = n > 0 we have v = ay for some string y with
ly| <nandaekX.

- Then

)t = (u(ay)

Cannot simplify (ua)f using inductive hypothesis. Can simplify
if we extend base case to include n = 0 and n = 1. However,
n =1 itself requires induction on |ul!
10

Regular expressions

Inductive Definition

A regular expression r over an alphabet X is one of the
following:
Base cases:

- () denotes the language 0
- e denotes the language {e}.
- a denote the language {a}.

n

Inductive Definition

A regular expression r over an alphabet X is one of the
following:
Base cases:

- () denotes the language 0
- e denotes the language {e}.
- a denote the language {a}.

Inductive cases: If ry and r, are regular expressions denoting
languages Ry and R, respectively then,

- (r1+ rp) denotes the language Ry U R;
-+ (r1+r2) = 1+, = (r1ry) denotes the language R1R;
- (r1)* denotes the language R}

n

Regular Languages vs Regular Expressions

Regular Languages Regular Expressions
() regular () denotes ()

{€e} regular e denotes {e}

{a} regular fora e a denote {a}

R1U R, regular if both are ri + rp denotes Ry UR;
R1R, regular if both are r{-rp denotes R1R;

R* is regular if R is r* denote R*

Regular expressions denote regular languages — they explicitly
show the operations that were used to form the language

12

Practice Problem [True/False]

The language {0"1}0’?1‘Z ‘ ij,R,€> O} is not regular.

13

Practice Problem

What is the regular expression for:

- All strings except 11.

14

Practice Problem

What is the regular expression for:

- All strings except 11.

- All strings that do not contain 000 as a subsequence.

14

Deterministic finite automata

Formal Tuple Notation

Definition
A deterministic finite automata (DFA) M = (Q, ., §,s,A) is a five

tuple where
- Qs a finite set whose elements are called states,
- Y is a finite set called the input alphabet,
- 6:QxX — Qisthe transition function,
- s € Qs the start state,
- A C Qs the set of accepting/final states.

Common alternate notation: gq for start state, F for final states.

15

DFA Notation

0
st —(w (o)
0
o 0 =
5 T —
o =

Practice Problem

Draw the DFA representing the regular language:
L={0V0okM*| i j,k ¢>0}

Non-deterministic Finite automata

Formal definition of language accepted by M

Definition .
The language L(M) accepted by a DFAM = (Q, %, 4,S,A) is

{we x| 6*(s,w) € A}

19

Another Way to look at NFAs

Is 010101 accepted?

startl a (
Urt
stml n (
‘“

20

Another Way to look at NFAs

Is 010100 accepted?

start 1 a (
Urt
start 1 n (

21

Practice Problem [True/False]

LetM = (%,Q,s,A,0) and M = (£,Q,s,Q\ A, d) be arbitrary
DFAs with identical alphabets, states, starting states, and
transition functions, but with complementary accepting states.

Then L(M) U L(M") = £*.

22

Practice Problem [True/False]

LetM = (%,Q,s,A,0) and M = (£,Q,s,Q\ A, d) be arbitrary
DFAs with identical alphabets, states, starting states, and
transition functions, but with complementary accepting states.

Then L(M)U L(M") = %",

23

Closure of Regular languages

Regular languages are closed under:

2%

Thompson’s algorithm

Given two ssandt:

L=LsNLt

L=LsUlL;

25

Example - Closure

Are regular languages closed under intersection L1 N L,?

26

Practice Problem [True/False]

If L1, Ly, ... are all regular languages, then L = J72, L; is regular.

27

Fooling Sets

Fooling Sets

Definition
For a language L over ¥ a set of strings F (could be infinite) is a

fooling set or distinguishing set for L if every two distinct
strings x,y € F are distinguishable.

28

Fooling Sets

Definition
For a language L over ¥ a set of strings F (could be infinite) is a

fooling set or distinguishing set for L if every two distinct
strings x,y € F are distinguishable.

Example: F = {0 | i > 0} is a fooling set for the language
L = {0*1F | k > 0}.

28

Fooling Sets

Definition
For a language L over ¥ a set of strings F (could be infinite) is a

fooling set or distinguishing set for L if every two distinct
strings x,y € F are distinguishable.

Example: F = {0 | i > 0} is a fooling set for the language
L = {0*1F | k > 0}.

Theorem
Suppose F is a fooling set for L. If F Is finite then there is no

DFA M that accepts L with less than |F| states.

28

Practice Problem [True/False]

For all languages L, if L is regular, then L does not have an
infinite fooling set.

29

Practice Problem [True/False]

The language {0"1}0’?1‘Z ‘ i>j>k>0> O} is not regular.

30

Practice Problem [True/False]

The strings 010 and 101 are distinguishable by the language
L={xeXxX*| |x| iseven}.

31

	Strings
	Induction on strings
	Regular expressions
	Deterministic finite automata
	Non-deterministic Finite automata
	Closure of Regular languages
	Fooling Sets

