
Pre-lecture brain teaser

Is the following language regular? Either way, prove it.
L = {strings of properly matched open and closing parentheses}

1

CS/ECE-374: Lecture 8 - Context-Free languages
and Turing Machines

Lecturer: Nickvash Kani
Chat moderator: Samir Khan
February 16, 2021

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Is the following language regular? Either way, prove it.
L = {strings of properly matched open and closing parentheses}

2

Larger world of languages!

Chomsky Hierarchy

Remember our hierarchy of languages
3

Chomsky Hierarchy

You’ve mastered regular expressions.
4

Chomsky Hierarchy

Now what about the next level up?
5

Context-Free Languages

Example

• V = {S}
• T = {a,b}
• P = {S→ ε | a | b | aSa | bSb}
(abbrev. for S→ ε, S→ a, S→ b, S→ aSa, S→ bSb)

S aSa abSba abbSbba abbbbba

What strings can S generate like this?

6

Example

• V = {S}
• T = {a,b}
• P = {S→ ε | a | b | aSa | bSb}
(abbrev. for S→ ε, S→ a, S→ b, S→ aSa, S→ bSb)

S aSa abSba abbSbba abbbbba

What strings can S generate like this?

6

Example

• V = {S}
• T = {a,b}
• P = {S→ ε | a | b | aSa | bSb}
(abbrev. for S→ ε, S→ a, S→ b, S→ aSa, S→ bSb)

S aSa abSba abbSbba abbbbba

What strings can S generate like this?

6

Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V, T,P, S)

• V is a finite set of non-terminal symbols

• T is a finite set of terminal symbols (alphabet)
• P is a finite set of productions, each of the form
A→ α

where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

• S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

7

Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V, T,P, S)

• V is a finite set of non-terminal symbols
• T is a finite set of terminal symbols (alphabet)

• P is a finite set of productions, each of the form
A→ α

where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

• S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

7

Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V, T,P, S)

• V is a finite set of non-terminal symbols
• T is a finite set of terminal symbols (alphabet)
• P is a finite set of productions, each of the form
A→ α

where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

• S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

7

Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V, T,P, S)

• V is a finite set of non-terminal symbols
• T is a finite set of terminal symbols (alphabet)
• P is a finite set of productions, each of the form
A→ α

where A ∈ V and α is a string in (V ∪ T)∗.
Formally, P ⊂ V × (V ∪ T)∗.

• S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

7

Example formally...

• V = {S}
• T = {a,b}
• P = {S→ ε | a | b | aSa | bSb}
(abbrev. for S→ ε, S→ a, S→ b, S→ aSa, S→ bSb)

G =

{S}, {a,b},



S→ ε,

S→ a,
S→ b
S→ aSa
S→ bSb


S



8

Examples

L = {0n1n | n ≥ 0}

S→ ε | 0S1

9

Examples

L = {0n1n | n ≥ 0}

S→ ε | 0S1

9

Context Free Languages

Definition
The language generated by CFG G = (V, T,P, S) is denoted by
L(G) where L(G) = {w ∈ T∗ | S ∗ w}.

Definition
A language L is context free (CFL) if it is generated by a context
free grammar. That is, there is a CFG G such that L = L(G).

10

Context Free Languages

Definition
The language generated by CFG G = (V, T,P, S) is denoted by
L(G) where L(G) = {w ∈ T∗ | S ∗ w}.

Definition
A language L is context free (CFL) if it is generated by a context
free grammar. That is, there is a CFG G such that L = L(G).

10

Example

L = {0n1n | n ≥ 0}

S→ ε | 0S1

L = {0n1m | m > n}

L =
{
w ∈

{
(,)

}∗
∣∣∣ w is properly nested string of parenthesis

}
.

11

Context-Sensitive Langauges

Chomsky Hierarchy

Now that we mastered acknowledged Context-Free
Languages..... 12

Chomsky Hierarchy

On to the next one.....
13

Example

The language L = {anbncn|n ≥ 1} is not a context free
language.

but it is a context-sensitive language!

• V = {S,A,B}
• T = {a,b, c}

• P =



S→ abc|aAbc,
Ab→ bA,
Ac → Bbcc
bB→ Bb

aB→ aa|aaA


S aAbc abAc abBbcc aBbbcc aaAbbcc aabAbcc

 aabbAcc aabbBbccc aabBbbccc aaBbbbccc
 aaabbbccc

14

Example

The language L = {anbncn|n ≥ 1} is not a context free
language. but it is a context-sensitive language!

• V = {S,A,B}
• T = {a,b, c}

• P =



S→ abc|aAbc,
Ab→ bA,
Ac → Bbcc
bB→ Bb

aB→ aa|aaA



S aAbc abAc abBbcc aBbbcc aaAbbcc aabAbcc
 aabbAcc aabbBbccc aabBbbccc aaBbbbccc

 aaabbbccc

14

Example

The language L = {anbncn|n ≥ 1} is not a context free
language. but it is a context-sensitive language!

• V = {S,A,B}
• T = {a,b, c}

• P =



S→ abc|aAbc,
Ab→ bA,
Ac → Bbcc
bB→ Bb

aB→ aa|aaA


S aAbc abAc abBbcc aBbbcc aaAbbcc aabAbcc

 aabbAcc aabbBbccc aabBbbccc aaBbbbccc
 aaabbbccc

14

Context Free Grammar (CFG) Definition

Definition
A CSG is a quadruple G = (V, T,P, S)

• V is a finite set of non-terminal symbols
• T is a finite set of terminal symbols (alphabet)
• P is a finite set of productions, each of the form
A→ α

where A and α are strings in (V ∪ T)∗.
• S ∈ V is a start symbol

G =
(

Variables, Terminals, Productions, Start var
)

15

Example formally...

L = {anbncn|n ≥ 1}

• V = {S,A,B}
• T = {a,b, c}

• P =



S→ abc|aAbc,
Ab→ bA,
Ac → Bbcc
bB→ Bb

aB→ aa|aaA



G =

{S,A,B}, {a,b, c},



S→ abc|aAbc,
Ab→ bA,
Ac → Bbcc
bB→ Bb

aB→ aa|aaA


S


16

Turing Machines

“Most General” computer?

• DFAs are simple model of computation.
• Accept only the regular languages.
• Is there a kind of computer that can accept any language,
or compute any function?

• Recall counting argument. Set of all languages:
{L | L ⊆ {0, 1}∗} is(((((((((hhhhhhhhhcountably infinite / uncountably infinite

• Set of all programs:
{P | P is a finite length computer program}:
is countably infinite /

((((((((((hhhhhhhhhh
uncountably infinite.

• Conclusion: There are languages for which there are no
programs.

17

“Most General” computer?

• DFAs are simple model of computation.
• Accept only the regular languages.
• Is there a kind of computer that can accept any language,
or compute any function?

• Recall counting argument. Set of all languages:
{L | L ⊆ {0, 1}∗} is(((((((((hhhhhhhhhcountably infinite / uncountably infinite

• Set of all programs:
{P | P is a finite length computer program}:
is countably infinite /

((((((((((hhhhhhhhhh
uncountably infinite.

• Conclusion: There are languages for which there are no
programs.

17

“Most General” computer?

• DFAs are simple model of computation.
• Accept only the regular languages.
• Is there a kind of computer that can accept any language,
or compute any function?

• Recall counting argument. Set of all languages:
{L | L ⊆ {0, 1}∗} is(((((((((hhhhhhhhhcountably infinite / uncountably infinite

• Set of all programs:
{P | P is a finite length computer program}:
is countably infinite /

((((((((((hhhhhhhhhh
uncountably infinite.

• Conclusion: There are languages for which there are no
programs.

17

Chomsky Hierarchy

Onto our final class of languages - recursively enumerable (aka
Turing-recognizable) languages.

18

Chomsky Hierarchy

Onto our final class of languages - recursively enumerable (aka
Turing-recognizable) languages. 18

What is a Turing machine

Turing machine

• Input written on (infinite) one sided tape.
• Special blank characters.
• Finite state control (similar to DFA).
• Ever step: Read character under head, write character out,
move the head right or left (or stay).

19

High level goals

• Church-Turing thesis: TMs are the most general computing
devices. So far no counter example.

• Every TM can be represented as a string.
• Existence of Universal Turing Machine which is the
model/inspiration for stored program computing. UTM can
simulate any TM

• Implications for what can be computed and what cannot
be computed

20

Turing machine: Formal definition

A Turing machine is a 7-tuple(Q,Σ, Γ, δ,q0,qacc,qrej)

• Q: finite set of states.
• Σ: finite input alphabet.
• Γ: finite tape alphabet.
• δ : Q× Γ → Q× Γ× {L,R,S}: Transition function.
• q0 ∈ Q is the initial state.
• qacc ∈ Q is the accepting/final state.
• qrej ∈ Q is the rejecting state.
• t or : Special blank symbol on the tape.

21

Turing machine: Transition function

δ : Q× Γ → Q× Γ× {L,R,S}

As such, the transition

δ(q, c) = (p,d,L)
q pc/d, L

• q: current state.
• c: character under tape
head.

• p: new state.
• d: character to write under
tape head

• L: Move tape head left.

Missing transitions
lead to hell state.
“Blue screen of death.”
“Machine crashes.”

22

Turing machine: Transition function

δ : Q× Γ → Q× Γ× {L,R,S}

As such, the transition

δ(q, c) = (p,d,L)
q pc/d, L

• q: current state.
• c: character under tape
head.

• p: new state.
• d: character to write under
tape head

• L: Move tape head left.

Missing transitions
lead to hell state.
“Blue screen of death.”
“Machine crashes.”

22

Some examples of Turing machines

Example: Turing machine for anbncn

Mark a

accept

Find &
 mark b

a/A, →

Check for
bs

B/B, →

a/a, →
B/B, →

Find &
 mark c

b/B, →

b/b, →
C/C, →

Find
next

0c/C, ←

A/A, →

C/C, ←
b/b, ←
B/B, ←
a/a, ←

B/B, →

Check for
cs

C/C, → ␣

C/C, →

Can view this Turing machine in action on
turingmachine.io!

23

turingmachine.io

Languages defined by a Turing
machine

Recursive vs. Recursively Enumerable

• Recursively enumerable (aka RE) languages

L = {L(M) | M some Turing machine} .

• Recursive / decidable languages

L = {L(M) | M some Turing machine that halts on all inputs} .

• Fundamental questions:
• What languages are RE?
• Which are recursive?
• What is the difference?
• What makes a language decidable?

24

Recursive vs. Recursively Enumerable

• Recursively enumerable (aka RE) languages (bad)
L = {L(M) | M some Turing machine} .

• Recursive / decidable languages (good)
L = {L(M) | M some Turing machine that halts on all inputs} .

• Fundamental questions:
• What languages are RE?
• Which are recursive?
• What is the difference?
• What makes a language decidable?

24

Recursive vs. Recursively Enumerable

• Recursively enumerable (aka RE) languages (bad)
L = {L(M) | M some Turing machine} .

• Recursive / decidable languages (good)
L = {L(M) | M some Turing machine that halts on all inputs} .

• Fundamental questions:
• What languages are RE?
• Which are recursive?
• What is the difference?
• What makes a language decidable?

24

	Larger world of languages!
	Context-Free Languages
	Context-Sensitive Langauges
	Turing Machines
	What is a Turing machine
	Some examples of Turing machines
	Languages defined by a Turing machine

