Pre-lecture brain teaser

$L' = \{\text{bitstrings with equal number of 0s and 1s}\}$

$L = \{0^n1^n \mid n \geq 0\}$

Suppose we have already shown that L' is non-regular. Can we show L is regular via closure.
CS/ECE-374: Lecture 7 - Non-regularity and fooling sets

Lecturer: Nickvash Kani
Chat moderator: Samir Khan
February 16, 2021

University of Illinois at Urbana-Champaign
Non-regularity via closure properties

$L' = \{\text{bitstrings with equal number of 0s and 1s}\}$

$L = \{0^n1^n \mid n \geq 0\}$

Suppose we have already shown that L' is non-regular. Can we show L is regular via closure.

$$L = L' \cup L(0^*1^*)$$

If L' was regular, then L would have to be regular.

Since L' is not regular.
Non-regularity via closure properties

\[L' = \{ \text{bitstrings with equal number of 0s and 1s} \} \]

\[L = \{ 0^n1^n \mid n \geq 0 \} \]

Suppose we have already shown that \(L' \) is non-regular. Can we show \(L \) is regular via closure.

[Can we show that \(L \) is non-regular from scratch?]
Proving non-regularity: Methods

- **Pumping lemma.** We will not cover it but it is *sometimes* an easier proof technique to apply, but not as general as the fooling set technique.

- **Closure properties.** Use existing non-regular languages and regular languages to prove that some new language is non-regular.

- **Fooling sets** - Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.
We have a language $L = \{0^n1^n | n \geq 0\}$
Prove that L is non-regular.
Not all languages are regular
Regular Languages, DFAs, NFAs

Theorem
Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.
Theorem
Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

• Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
• Hence number of regular languages is countably infinite
• Number of languages is uncountably infinite
• Hence there must be a non-regular language!
A Simple and Canonical Non-regular Language

\[L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots,\} \]
A Simple and Canonical Non-regular Language

\[L = \{0^n1^n \mid n \geq 0\} = \{\varepsilon, 01, 0011, 000111, \ldots\} \]

Theorem

\[L \text{ is not regular.} \]
A Simple and Canonical Non-regular Language

\[L = \{0^n1^n | n \geq 0\} = \{\varepsilon, 01, 0011, 000111, \cdots\} \]

Theorem

\(L \) is not regular.

Question: Proof?
A Simple and Canonical Non-regular Language

\[L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\} \]

Theorem

L is not regular.

Question: Proof?

Intuition: Any program to recognize \(L \) seems to require counting number of zeros in input which cannot be done with fixed memory.
A Simple and Canonical Non-regular Language

\[L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \} \]

Theorem
\(L \) is not regular.

Question: Proof?

Intuition: Any program to recognize \(L \) seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?
Proof by contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M) = L$.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q| = n$.
Proof by contradiction

Each substring 0^i must have a separate state

- Suppose L is regular. Then there is a DFA M such that $L(M) = L$.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q| = \text{even}$.

![DFA Diagram]

Because the # of states in the DFA must be odd.

One $1^n \notin L$.

Each state q_0, q_1, q_2, \ldots represents a substring 0^i.

But $n = 2i + 1$ violates DFA definition, then you have a contradiction.
Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M) = L$.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q| = n$.
Proof by Contradiction

• Suppose L is regular. Then there is a DFA M such that $L(M) = L$.
• Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q| = n$.

Consider strings $\epsilon, 0, 00, 000, \cdots, 0^n$ total of $n + 1$ strings.
Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M) = L$.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q| = n$.

Consider strings $\epsilon, 0, 00, 000, \ldots, 0^n$ total of $n + 1$ strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

For each of these strings, we need to reach a different state.

By pigeon hole principle $q_i = q_j$ for some $0 \leq i < j \leq n$.
That is, M is in the same state after reading 0^i and 0^j where $i \neq j$.

Proof by Contradiction

• Suppose \(L \) is regular. Then there is a DFA \(M \) such that
 \(L(M) = L \).
• Let \(M = (Q, \{0, 1\}, \delta, s, A) \) where \(|Q| = n \).

Consider strings \(\epsilon, 0, 00, 000, \ldots, 0^n \) total of \(n + 1 \) strings.

What states does \(M \) reach on the above strings? Let
\(q_i = \delta^*(s, 0^i) \).

By pigeon hole principle \(q_i = q_j \) for some \(0 \leq i < j \leq n \).
That is, \(M \) is in the same state after reading \(0^i \) and \(0^j \) where
\(i \neq j \).

\(M \) should accept \(0^i1^i \) but then it will also accept \(0^j1^i \) where \(i \neq j \).
Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M) = L$.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where $|Q| = n$.

Consider strings $\epsilon, 0, 00, 000, \cdots, 0^n$ total of $n + 1$ strings.

What states does M reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \leq i < j \leq n$. That is, M is in the same state after reading 0^i and 0^j where $i \neq j$.

M should accept 0^i1^i but then it will also accept 0^j1^i where $i \neq j$. This contradicts the fact that M accepts L. Thus, there is no DFA for L.
When two states are equivalent?

O₁ & O₂ must have separate states
States that cannot be combined?

We concluded that because each 0^i prefix has a unique state. Are there states that aren’t unique? Let’s combine 0^1 & 0^2.
Equivalence between states

Definition
\(M = (Q, \Sigma, \delta, s, A) \): DFA.

Two states \(p, q \in Q \) are equivalent if for all strings \(w \in \Sigma^* \), we have that

\[
\delta^*(p, w) \in A \iff \delta^*(q, w) \in A.
\]

One can merge any two states that are equivalent into a single state.
Distinguishing between states

Definition

$M = (Q, \Sigma, \delta, s, A)$: DFA.

Two states $p, q \in Q$ are **distinguishable** if there exists a string $w \in \Sigma^*$, such that

- $\delta^*(p, w) \in A$ and $\delta^*(q, w) \notin A$.
- or
- $\delta^*(p, w) \notin A$ and $\delta^*(q, w) \in A$.

Example:

- $\delta(q_0, 0) = q_1$
- $\delta(q_0, 1) = q_3$
- $\delta(q_2, 0) = q_2$ (A)
- $\delta(q_2, 1) = q_4$ (A)
Distinguishable prefixes

\(M = (Q, \Sigma, \delta, s, A): \text{DFA} \)

Idea: Every string \(w \in \Sigma^* \) defines a state \(\nabla w = \delta^* (s, w) \).

\[
q_i = \delta^* (s, w) = q_w
\]

\(\nabla (\varepsilon) \neq \nabla (1) \)

\(\nabla (0) = \nabla (1) \)

\(\nabla (00) = q_2 \)

\(\nabla (10) = q_2 \)

\(\nabla (0001) = \nabla (\varepsilon \ldots 1) = q_4 \)

\(\delta(q_0, 0) = q_1 \)

\(\delta(q_0, 0) = q_1 \)

\(\delta(q_0, 1) = q_4 \)

\(\delta(q_1, 0) = q_2 \)

\(\delta(q_1, 1) = q_4 \)

\(\delta(q_2, 0) = q_2 \)

\(\delta(q_2, 1) = q_3 \)

\(\delta(q_3, 0) = q_2 \)

\(\delta(q_3, 1) = q_4 \)

\(\delta(q_4, 0) = q_4 \)

\(\delta(q_4, 1) = q_4 \)
Distinguishable prefixes

\[M = (Q, \Sigma, \delta, s, A) : \text{DFA} \]

Idea: Every string \(w \in \Sigma^* \) defines a state \(\nabla w = \delta^*(s, w) \).

Definition
Two strings \(u, w \in \Sigma^* \) are **distinguishable** for \(M \) (or \(L(M) \)) if \(\nabla u \) and \(\nabla w \) are distinguishable.
Distinguishable prefixes

\[M = (Q, \Sigma, \delta, s, A): \text{DFA} \]

Idea: Every string \(w \in \Sigma^* \) defines a state \(\nabla w = \delta^*(s, w) \).

Definition
Two strings \(u, w \in \Sigma^* \) are **distinguishable** for \(M \) (or \(L(M) \)) if \(\nabla u \) and \(\nabla w \) are distinguishable.

Definition (Direct restatement)
Two prefixes \(u, w \in \Sigma^* \) are **distinguishable** for a language \(L \) if there exists a string \(x \), such that \(ux \in L \) and \(wx \notin L \) (or \(ux \notin L \) and \(wx \in L \)).

\[
\begin{align*}
\text{If } \nabla u \equiv \nabla w & \Rightarrow \exists i & \nabla^*(q_i, x) & \Rightarrow \exists c \in A \\
\text{equivalent} & & \delta^*(s, ux) & \in A & \delta^*(s, ux) & \in A \\
\text{If } \delta^*(s, ux) \in A & \Rightarrow \delta^*(s, wx) \notin A
\end{align*}
\]
Distinguishable means different states

Lemma
L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s, x) \in Q$ and $\nabla y = \delta^*(s, y) \in Q$
Proof by a figure

Possible

\[\delta^*(s, x) \xrightarrow{w} \delta^*(s, xw) \]

\[\delta^*(s, y) \xrightarrow{w} \delta^*(s, yw) \]

Not possible

\[\delta^*(s, x) = \delta^*(s, y) \]

\[\delta^*(s, xw) \]

\[\delta^*(s, yw) \]
Distinguishable strings means different states: Proof

Lemma

L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^$ are distinguishable, then $\nabla x \neq \nabla y$.***

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.
Distinguishable strings means different states: Proof

Lemma

L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ *are distinguishable, then* $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.
Distinguishable strings means different states: Proof

Lemma

L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: *DFA* for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.

$$\implies A \ni \nabla x w = \delta^*(s, xw) = \delta^*(\nabla x, w)$$
Distinguishable strings means different states: Proof

Lemma

L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.

$\implies A \ni \nabla x w = \delta^*(s, x w) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$
Distinguishable strings means different states: Proof

Lemma
L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.
Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.

$\implies A \ni \nabla x w = \delta^*(s, x w) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$
$= \delta^*(s, y w) = \nabla y w \notin A$.
Distinguishable strings means different states: Proof

Lemma

L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Proof.

Assume for the sake of contradiction that $\nabla x = \nabla y$.

By assumption $\exists w \in \Sigma^*$ such that $\nabla x w \in A$ and $\nabla y w \notin A$.

$\implies A \ni \nabla x w = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w)$

$= \delta^*(s, yw) = \nabla y w \notin A$.

$\implies A \ni \nabla y w \notin A$. Impossible!
Distinguishable strings means different states: Proof

Lemma
$L: \text{regular language.}$

$M = (Q, \Sigma, \delta, s, A): \text{DFA for } L.$

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y.$

Proof.
Assume for the sake of contradiction that $\nabla x = \nabla y.$

By assumption $\exists w \in \Sigma^*$ such that $\nabla xw \in A$ and $\nabla yw \not\in A.$

$\implies A \ni \nabla xw = \delta^*(s, xw) = \delta^*(\nabla x, w) = \delta^*(\nabla y, w) = \delta^*(s, yw) = \nabla yw \not\in A.$

$\implies A \ni \nabla yw \not\in A. \text{ Impossible!}$

Assumption that $\nabla x = \nabla y$ is false.

\blacksquare
Review questions...

• Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^n1^n \mid n \geq 0\}$.

\[
\begin{align*}
 u \circ w & \in A \quad u, v \text{ are distinguishable} \\
 \forall w \in A \quad u = 0^i \quad v = 0^j \quad w = 1^i \quad . \\
 \forall w \quad 0^i1^i & \in A \\
 0^i1^i & \in A \quad \text{thus } 0^i \notin 0^j \text{ are distinguishable}
\end{align*}
\]
Review questions...

- Prove for any $i \neq j$ then 0^i and 0^j are distinguishable for the language $\{0^n1^n \mid n \geq 0\}$.

- Let L be a regular language, and let w_1, \ldots, w_k be strings that are all pairwise distinguishable for L. Prove any DFA for L must have at least k states.

 $$\forall w_i = q_i \quad Q = \{q_1, \ldots, q_k\} \quad |Q| = k \text{ or more}$$
Review questions...

- Prove for any \(i \neq j \) then \(0^i \) and \(0^j \) are distinguishable for the language \(\{0^n1^n \mid n \geq 0\} \).

- Let \(L \) be a regular language, and let \(w_1, \ldots, w_k \) be strings that are all pairwise distinguishable for \(L \). Prove any DFA for \(L \) must have at least \(k \) states.

- Prove that \(\{0^n1^n \mid n \geq 0\} \) is not regular.

Use: \(0^i \neq 0^j \) are distinguishable

For every string \(0^n = 2^m \) in therefore

DFA must have at least \(n \) states

Since \(n \to \infty \) DFA not possible

\(L \) not regular
Fooling sets: Proving non-regularity
Definition
For a language L over Σ a set of strings F (could be infinite) is a
fooling set or distinguishing set for L if every two distinct
strings $x, y \in F$ are distinguishable.
Definition
For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \geq 0\}$ is a fooling set for the language $L = \{0^n1^n \mid n \geq 0\}$.
Definition
For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \geq 0\}$ is a fooling set for the language $L = \{0^n1^n \mid n \geq 0\}$.

Theorem
Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.
Already proved the following lemma:

Lemma

L: regular language.

$M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s, x)$.
Theorem (Reworded.)

L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least $|F|$ states.

Proof.
Let $F = \{w_1, w_2, \ldots, w_m\}$ be the fooling set.

Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.
Proof of theorem

Theorem (Reworded.)

L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least $|F|$ states.

Proof.

Let $F = \{w_1, w_2, \ldots, w_m\}$ be the fooling set.

Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.

Let $q_i = \nabla w_i = \delta^*(s, w_i)$.
Proof of theorem

Theorem (Reworded.)

L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least $|F|$ states.

Proof.

Let $F = \{w_1, w_2, \ldots, w_m\}$ be the fooling set.

Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.

Let $q_i = \nabla w_i = \delta^*(s, x_i)$.

By lemma $q_i \neq q_j$ for all $i \neq j$.

As such, $|Q| \geq |\{q_1, \ldots, q_m\}| = |\{w_1, \ldots, w_m\}| = |A|$.

\[\square\]
Corollary
If L has an infinite fooling set F then L is not regular.

Proof.
Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.
Corollary
If L has an infinite fooling set F then L is not regular.

Proof.
Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.

Let $F_i = \{w_1, \ldots, w_i\}$.

By theorem, $\# \text{ states of } M \geq |F_i| = i$, for all i.

As such, number of states in M is infinite.
Infinite Fooling Sets

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.

Let $F_i = \{w_1, \ldots, w_i\}$.

By theorem, # states of $M \geq |F_i| = i$, for all i.

As such, number of states in M is infinite.

Contradiction: DFA = deterministic finite automata. But M not finite.
Examples

- \{0^n1^n \mid n \geq 0\}
 \[F = \{0^i1^i \mid i > 0\} \]
 \[F \] \(0^n \) and \(1^n\) are distinguishable because \(i = 1\)

- \{bitstrings with equal number of 0s and 1s\}
 Can use the same fooling set as before: Same logic.
 \(0^i1^i \in L\) and \(0^i1^i \notin L\) so \(\nabla 0^i\) and \(\nabla 0^j\) are distinguishable and so \(L\) is not regular.

- \{0^k1^\ell \mid k \neq \ell\}
 Similar logic. \(0^i1^i \notin L\) and \(0^i1^i \in L\) so \(\nabla 0^i\) and \(\nabla 0^j\) are distinguishable and so \(L\) is not regular.
 \[u = 0^i, \quad v = 0^j, \quad u \in L, \quad v \in L \]
 \[v \in L \]
$L = \{\text{strings of properly matched open and closing parentheses}\}$
Examples

\[L = \{ \text{palindromes over the binary alphabet} \Sigma = \{0, 1\} \} \]

A palindrome is a string that is equal to its reversal, e.g. 10001 or 0110.

\[P = \{ (01)^i \mid i > 0 \} \]

\[u = (01)^x \]
\[v = (01)^y \]
\[w = (10)^x \]

\[uvw \in L \]
\[vw \notin L \]

Hence all prefixes are distinguishable.

If \(l \to \infty \)

Thus \(M \) cannot exist.

\(L(M) \) not regular.
Exponential gap in number of states between DFA and NFA sizes
Exponential gap between NFA and DFA size

\[L_4 = \{ w \in \{0, 1\}^* \mid w \text{ has a 1 located 4 positions from the end} \} \]

DFA:

NFA:
Exponential gap between NFA and DFA size

\[L_k = \{w \in \{0, 1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \} \]
Exponential gap between NFA and DFA size

\[L_k = \{ w \in \{0, 1\}^* \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \} \]

Recall that \(L_k \) is accepted by a \textbf{NFA} \(N \) with \(k + 1 \) states.
Exponential gap between NFA and DFA size

$L_k = \{w \in \{0, 1\}^* | w \text{ has a } 1 \text{ } k \text{ positions from the end}\}$

Recall that L_k is accepted by a NFA N with $k + 1$ states.

Theorem

Every DFA that accepts L_k has at least 2^k states.
Exponential gap between NFA and DFA size

\[L_k = \{ w \in \{0, 1\}^* \mid w \text{ has a 1 } k \text{ positions from the end} \} \]

Recall that \(L_k \) is accepted by a NFA \(N \) with \(k + 1 \) states.

Theorem

Every DFA that accepts \(L_k \) has at least \(2^k \) states.

Claim

\(F = \{ w \in \{0, 1\}^* : |w| = k \} \) is a fooling set of size \(2^k \) for \(L_k \).

Why?

\[x \neq y \]

\[x \ x_0 \ x_1 \ x_2 \ldots \ x_i \ldots \ x_k \]

\[y \ y_0 \ y_1 \ y_2 \ldots \ y_i \ldots \ y_k \]

\(i \)-th position is for first digits that differ

\(k \)-th position from the end

Digits differ
How do we pick a fooling set F?

- If x, y are in F and $x \neq y$ they should be distinguishable! Of course.
- All strings in F except maybe one should be prefixes of strings in the language L.

For example if $L = \{0^k1^k \mid k \geq 0\}$ do not pick 1 and 10 (say). Why?
Myhill-Nerode Theorem
One automata to rule them all

“Myhill-Nerode Theorem”: A regular language L has a unique (up to naming) minimal automata, and it can be computed efficiently once any DFA is given for L.
Recall:

Definition
For a language L over Σ and two strings $x, y \in \Sigma^*$ we say that x and y are **distinguishable** with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L. x, y are **indistinguishable** with respect to L if there is no such w.

Given language L over Σ define a relation \equiv_L over strings in Σ^* as follows: $x \equiv_L y$ iff x and y are indistinguishable with respect to L.
Indistinguishably

Recall:

Definition
For a language L over Σ and two strings $x, y \in \Sigma^*$ we say that x and y are distinguishable with respect to L if there is a string $w \in \Sigma^*$ such that exactly one of xw, yw is in L. x, y are indistinguishable with respect to L if there is no such w.

Given language L over Σ define a relation \equiv_L over strings in Σ^* as follows: $x \equiv_L y$ iff x and y are indistinguishable with respect to L.

Definition
$x \equiv_L y$ means that $\forall w \in \Sigma^* : xw \in L \iff yw \in L$.

In words: x is equivalent to y under L.
Example: Equivalence classes
Indistinguishability

Claim
\(\equiv_L \) is an equivalence relation over \(\Sigma^* \).

Proof.

- Reflexive: \(\forall x \in \Sigma^*: \forall w \in \Sigma^*: xw \in L \iff xw \in L. \)
 \(\implies x \equiv_L x. \)

- Symmetry: \(x \equiv_L y \) then \(\forall w \in \Sigma^*: xw \in L \iff yw \in L \)
 \(\forall w \in \Sigma^*: yw \in L \iff xw \in L \implies y \equiv_L x. \)

- Transitivity: \(x \equiv_L y \) and \(y \equiv_L z \)
 \(\forall w \in \Sigma^*: xw \in L \iff yw \in L \) and \(\forall w \in \Sigma^*: yw \in L \iff zw \in L \)
 \(\implies \forall w \in \Sigma^*: xw \in L \iff zw \in L \)
 \(\implies x \equiv_L z. \)
Equivalences over automatas...

Claim
\(\equiv_L\) is an equivalence relation over \(\Sigma^*\).
Therefore, \(\equiv_L\) partitions \(\Sigma^*\) into a collection of equivalence classes.

Definition
\(L\): A language For a string \(x \in \Sigma^*\), let
\[
[x] = [x]_L = \{y \in \Sigma^* \mid x \equiv_L y\}
\]
be the equivalence class of \(x\) according to \(L\).

Definition
\([L] = \{[x]_L \mid x \in \Sigma^*\}\) is the set of equivalence classes of \(L\).
Claim

Let x, y be two distinct strings. If x, y belong to the same equivalence class of \equiv_L then x, y are indistinguishable. Otherwise they are distinguishable.
Strings in the same equivalence class are indistinguishable

Lemma

Let x, y be two distinct strings.

$x \equiv_L y \iff x, y$ are indistinguishable for L.

Proof.

$x \equiv_L y \implies \forall w \in \Sigma^*: xw \in L \iff yw \in L$

x and y are indistinguishable for L.

$x \not\equiv_L y \implies \exists w \in \Sigma^*: xw \in L$ and $yw \not\in L$

$\implies x$ and y are distinguishable for L.

\Box
All strings arriving at a state are in the same class

Lemma

$M = (Q, \Sigma, \delta, s, A)$ a DFA for a language L.

For any $q \in A$, let $L_q = \{ w \in \Sigma^* | \nabla w = \delta^*(s, w) = q \}$.

Then, there exists a string x, such that $L_q \subseteq [x]_L$.
An inefficient automata

General idea behind algorithm:

Base case: Given two states, if p and q, if one accepts and the other rejects, then they are not equivalent.

Recursion: Assuming $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$, if $p' \neq q'$ then $p \neq q$
An inefficient automata

![Automata Diagram]