Pre-lecture brain teaser

L" = {bitstrings with equal number of 0s and 1s}

L = {0M" | n > 0}

Suppose we have already shown that L’ is non-regular. Can we
show L is regular via closure.
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Non-regularity via closure properties

L" = {bitstrings with equal number of 0s and 1s}

L = {0M" | n> 0}

Suppose we have already shown that L’ is non-regular. Can we
show L is regular via closure.
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Non-regularity via closure properties

L" = {bitstrings with equal number of 0s and 1s}

L ={0™" | n> 0}

Suppose we have already shown that L’ is non-regular. Can we
show L is regular via closure.

[[Can we show that L is non-regular from scratch?]



Proving non-regularity: Methods

- Pumping lemma. We will not cover it but it is sometimes
L st an easier proof technique to apply, but not as general as

cov® the fooling set technique.
400
Closure properties. Use existing non-regular languages

/ and regular languages to prove that some new language Is
C’”’ non- regular

Method of distinguishing suffixes. To prove

. that L is non-regular find an infinite fooling set.



Pre-lecture brain teaser

We have a language L = {0"1"|n > 0}
Prove that L is non-regular.



Not all languages are regular



Regular Languages, DFAs, NFAs

Theorem

Languages accepted bym regular expressions

are the same.

Question: Is every language a regular language? No.



Regular Languages, DFAs, NFAs

Theorem '
Languages accepted by DFAs, NFAs, and regular expressions

are the same. T -7 & st
e & 5

Question: Is every language a regular language? No.

- Each DFA' M can be represented as a string over a finite &

alphabet ¥ by appropriate encoding o 1* C% )

- Hence number of regular languages is countably infinite
- Number of languages IS uncountably infinite

- Hence there must be a non-regular language!



A Simple and Canonical Non-regular Language

L ={0M" | n > 0} = {e,01,0011,000111, - - - , }
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A Simple and Canonical Non-regular Language

L ={0M" | n > 0} = {e,01,0011,000111, - - - , }

Theorem
L Is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require
counting number of zeros in input which cannot be done with

fixed memory.



A Simple and Canonical Non-regular Language

L ={0M" | n > 0} = {e,01,0011,000111, - - - , }

Theorem
L Is not regular.

Question: Proof?
Intuition: Any program to recognize L seems to require

counting number of zeros in input which cannot be done with
fixed memory.

How do we formalize intuition and come up with a formal
proof?



Proof by contradiction

-.Suppose L is regular. Then there is a DFAM such that
L(M) = L.

- Let M = (Q,{0,1},6,s,A) where |Q| = n."

%



Proof by contradiction
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Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that
L(M) = L.
- Let M =(Q,{0,1},6,s,A) where |Q| = n.



Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that
L(M) = L.
- Let M =(Q,{0,1},6,s,A) where |Q| = n.

Consider strings ¢, 0,00, 000, --- ,0" total of n + 1 strings.



Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that
L(M) = L.
- Let M =(Q,{0,1},6,s,A) where |Q| = n.

Consider strings ¢, 0,00, 000, --- ,0" total of n + 1 strings.
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By pigeon hole principle g; = g; forsome 0 </ < j < n. T e
That is, M is in the same state after reading 0' and 0/ where
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Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that
L(M) = L.
- Let M =(Q,{0,1},6,s,A) where |Q| = n.

Consider strings ¢, 0,00, 000, ---,0" total of n + 1 strings.

What states does M reach on the above strings? Let
g = 5*(5, Oi).

By pigeon hole principle g; = g; forsome 0 </ <j < n.
That is, M is in the same state after reading 0' and 0/ where

i

M should accept 0'1 but then it will also accept @1 where | # j.



Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that
L(M) = L.
- Let M =(Q,{0,1},6,s,A) where |Q| = n.

Consider strings ¢, 0,00, 000, --- ,0" total of n + 1 strings.

What states does M reach on the above strings? Let
g = 5*(5, Oi).

By pigeon hole principle g; = g; forsome 0 </ <j < n.
That is, M is in the same state after reading 0' and 0/ where

i)
M should accept 01 but then it will also accept 0/1' where i # |.
This contradicts the fact that M accepts L. Thus, there is no DFA 8



When two states are equivalent?
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States that cannot be combined?

We concluded that because each 0 prefix has a unique state.
Are there states that aren’t unique? [.oks Comioine o & O
Can states be combined?



Equivalence between states

Definition
M=(Q%,5,5,A)

Two states'p,g € Q are
for all strings w € ¥*, we have that

0*(p,w) EA < °(q,W) EA

One can merge any two states that N H’“/
are equivalent into a single state.

10



Distinguishing between states

Definition
M= (Q,¥,8,5,A): DFA.

Two states p,g € Q are
distinguishable if there exists a string
W e X*, such that

*(p,w) €A and  §%(g,w) ¢ A. Z%, 0) =g,

or

d*(p,w) ¢ A and 6" (q,w) € A.

1



Distinguishable prefixes

M= (Q,%,0,s,A):
ldea: Every string w € ¥* defines a state ': 6% (s, w).
zi - S,G(g /“""> "9
V(D) = V(")
VCOOD > 42
V(e
D # 0D T iodg,

Z ,0>"'i1
VdOOO\Bif{ZZUI\‘—q_
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Distinguishable prefixes

M=(Q,X%,6,5,A): DFA
ldea: Every string w € £* defines a state Vw = §*(s, w).

Definition
Two strings u,w € £* are distinguishable for M (or L(M)) if Vu

and Vw are distinguishable.

12



Distinguishable prefixes

M=(Q,%,ds,A):
ldea: Every string w € ¥* defines a state Vw = §*(s, w).

Definition
Two strings u,w € ©* are for M (or L(M)) if Vu

and Vw are distinguishable.

Definition (Direct restatement)

Two prefixes U, w € ¥* are for a language L if
there exists a string x, such that ux € L and wx ¢ L (or ux ¢ L
and wx € L). A A

Y €A
0 YuzVe =29 G =>lgp

ot veherdS
* 3 £ qur)EL é‘*@,w} = gﬁ(g,'«mB DI
S G A
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Distinguishable means different states

Lemma
L: regular language.

M=(Q,%,d,s,A): DFA for L.
If X,y € ¥* are distinguishable, then Vx # Vy.

Reminder: Vx = §*(s,x) € Qand Vy = §*(s,y) € Q

13



Proof by a figure

Possible Not possible

14



Distinguishable strings means different states: Proof

Lemma
L: reqular language.

M=(Q,%,6,s,A): DFA for L.
If X,y € ¥* are distinguishable, then Vx # Vy.

Proof. o
Assume for the sake of contradiction that Vx = Vy.

15



Distinguishable strings means different states: Proof

Lemma
L: reqular language.

M=(Q,%,6,s,A): DFA for L.
If X,y € ¥* are distinguishable, then Vx # Vy.

Proof. o
Assume for the sake of contradiction that Vx = Vy.

By assumption dw € ¥* such that Vxw € A and Vyw ¢ A.
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Distinguishable strings means different states: Proof

Lemma
L: reqular language.

M=(Q,%,6,s,A): DFA for L.
If X,y € ¥* are distinguishable, then Vx # Vy.

Proof. o
Assume for the sake of contradiction that Vx = Vy.

By assumption dw € ¥* such that Vxw € A and Vyw ¢ A.

—> A > Vxw = §*(s,xw) = §*(Vx,w)

15



Distinguishable strings means different states: Proof

Lemma
L: reqular language.

M=(Q,%,6,s,A): DFA for L.
If X,y € ¥* are distinguishable, then Vx # Vy.

Proof. o
Assume for the sake of contradiction that Vx = Vy.

By assumption dw € ¥* such that Vxw € A and Vyw ¢ A.
— A > Vxw = §*(s,xw) = 6*(Vx,w)= 6*(Vy, w)

15



Distinguishable strings means different states: Proof

Lemma
L: reqular language.

M=(Q,%,6,s,A): DFA for L.
If X,y € ¥* are distinguishable, then Vx # Vy.

Proof. o
Assume for the sake of contradiction that Vx = Vy.

By assumption dw € ¥* such that Vxw € A and Vyw ¢ A.

— A > Vxw = §*(s,xw) = 6*(Vx,w)= 6*(Vy, w)
= 0*(s,yw) = Vyw ¢ A.

15



Distinguishable strings means different states: Proof

Lemma
L: reqular language.

M=(Q,%,6,s,A): DFA for L.
If X,y € ¥* are distinguishable, then Vx # Vy.

Proof. o
Assume for the sake of contradiction that Vx = Vy.

By assumption dw € ¥* such that Vxw € A and Vyw ¢ A.

— A > Vxw = §*(s,xw) = 6*(Vx,w)= 6*(Vy, w)
= 0*(s,yw) = Vyw ¢ A.

—> A > Vyw ¢ A Impossible!

15



Distinguishable strings means different states: Proof

Lemma
L: reqular language.

M=(Q,%,6,s,A): DFA for L.
If X,y € ¥* are distinguishable, then Vx # Vy.

Proof. o
Assume for the sake of contradiction that Vx = Vy.

By assumption dw € ¥* such that Vxw € A and Vyw ¢ A.

— A > Vxw = §*(s,xw) = 6*(Vx,w)= 6*(Vy, w)
= 0*(s,yw) = Vyw ¢ A.

—> A > Vyw ¢ A Impossible!
Assumption that Vx = Vy Is false. N

15



Review questions...

- Prove for any i # j then|0’ and 0l)are distinguishable for
the language {0"1" | n > 0}.
uw & A W/l owe 04)(;4’)»3@9&)\3)2, .
. - - ¢
\2;»0 ¢A W= 0" v=o' w=l
WL i
Adw OZ é/a' H"'E O fD Nn;;,,jM

L)
L J

Ol EA
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Review questions...

- Prove for any i # j then 0' and 0’/ are distinguishable for
the language {0"1" | n > 0}.

- Let L be a regular language, and let wo, ..., w, be strings
that are all pairwise distinguishable for L. Prove any DFA
for L must have at least k states.

Vo: =9 Q= e 253 18\ = k or ere

16



Review questions...

- Prove for any i # j then 0' and 0’/ are distinguishable for
the language {0"1" | n > 0}.

- Let L be a regular language, and let wy, ..., w, be strings
that are all pairwise distinguishable for L. Prove any
for L must have at least k states.

- Prove that {0"1" | n > 0} is not regular.

use 5 4 0\3 e, LisHmquasloble

16



Fooling sets: Proving non-regularity




Fooling Sets

Definition
For a language L over X a set of strings F (could be infinite) is a

fooling set or distinguishing set for L If every two distinct
strings x,y € F are distinguishable.

17



Fooling Sets

Definition
For a language L over X a set of strings F (could be infinite) is a

fooling set or distinguishing set for L If every two distinct
strings x,y € F are distinguishable.

Example: F = {0’ | i > 0} is a fooling set for the language
L =4{0""|n>0}

17



Fooling Sets

Definition
For a language L over X a set of strings F (could be infinite) is a

fooling set or distinguishing set for L If every two distinct
strings x,y € F are distinguishable.

Example: F = {0’ | i > 0} is a fooling set for the language
L=4{0""|n>0}

Theorem . .
Suppose F is a fooling set for L. If F IS fini

DFA M that accepts L with less than |F| states.

n there is no

17



Already proved the following lemma:

Lemma
L: regular language.

M=(Q,%,d,s,A): DFA for L.
If X,y € X* are distinguishable, then Vx #£ Vy.

Reminder: VX = 6%(s, X).

18



Proof of theorem

Theorem (Reworded.)
L: A language

F: a fooling set for L.
If Fis finite then any DFA M that accepts L has at least |F| states.

Proof. _
Let F = {wy,wy, ..., W) be the fooling set.

let M =(Q, %, d,s,A) be any DFA that accepts L.

19



Proof of theorem

Theorem (Reworded.)
L: A language

F: a fooling set for L.
If Fis finite then any DFA M that accepts L has at least |F| states.

Proof. _
Let F = {wy,wy, ..., W) be the fooling set.

let M =(Q, %, d,s,A) be any DFA that accepts L.
Let g; = Vw; = §*(s,W)).
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Proof of theorem

Theorem (Reworded.)
L: A language

F: a fooling set for L.
If Fis finite then any DFA M that accepts L has at least |F| states.

Proof. _
Let F = {wy,wy, ..., W) be the fooling set.

let M =(Q, %, d,s,A) be any DFA that accepts L.
Let g; = Vw; = §*(s, X;).
By lemma q; # q; for all 1 # J.

As such,

> = = |A]. []
Q2 191, -, Gm}| = W, ..., Win}| = A

19



Infinite Fooling Sets

Corollary . .
If L has an infinite fooling set F then L is not regular.

Proof.
Let w1, Ws, ... C F be an infinite sequence of strings such that

every pair of them are distinguishable.

Assume for contradiction that 3 M a DFA for L.

20



Infinite Fooling Sets

Corollary . .
If L has an infinite fooling set F then L is not regular.

Proof.
Let w1, Ws, ... C F be an infinite sequence of strings such that

every pair of them are distinguishable.
Assume for contradiction that 3 M a DFA for L.
Let Fj = {wn, ..., w;}.

By theorem, # states of M > |F;| = |, for all I.

As such, number of states in M is infinite.

20



Infinite Fooling Sets

Corollary . .
If L has an infinite fooling set F then L is not regular.

Proof.
Let w1, Ws, ... C F be an infinite sequence of strings such that

every pair of them are distinguishable.
Assume for contradiction that 3 M a DFA for L.
Let Fj = {wn, ..., w;}.

By theorem, # states of M > |F;| = |, for all I.
As such, number of states in M is infinite.

Contradiction: DFA = deterministic finite automata. But M not
finite. []

20



. {O”']” n >O} F’ go ‘ >G'S ‘\
51 0O are Aisbguchble becamwe w2 1

+ {bitstrings with equal number of Os and 1s} D> go.“l" )i 503
Can use the same fooling set as before: Same logic.
01" € Land 0/1 ¢ L so V0' and VO are distinguishable
and so L is not regular.

- {0"1° | R# 4
Similar logic. 01 ¢ L and 0/1' € L so V0’ and VO’ are
distinguishable and so L is not regular.
u= O w=z | LYY ¢ L
vt 0‘) vw € L

21



L = {strings of properly matched open and closing parentheses}

22



L = {palindromes over the binary alphabet® = {0,1}}
A palindrome is a string that is equal to its reversal, e.g. 100071

or 0110.
al;>o’S~ 2 lawes WM prifives e
F- (oD ety PUstiauinlbeble
w= (O ww €L 1= o
Cot)! VWE L The M et ert
V -
. LLwD ret e
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Exponential gap in number of states
between DFA and NFA sizes




Exponential gap between NFA and DFA size

<k
L, = {w € {0,1}* | w has a 1 located 4 positions from the end}

24



Exponential gap between NFA and DFA size

L, = {w € {0,1}* | w has a 1 k positions from the end}
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Exponential gap between NFA and DFA size

L, = {w € {0,1}* | w has a 1 k positions from the end}

Recall that L, Is accepted by a NFA N with kR + 1 states.
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Exponential gap between NFA and DFA size

L, = {w € {0,1}* | w has a 1 k positions from the end}
Recall that L, Is accepted by a NFA N with kR + 1 states.

Theorem
Every DFA that accepts Ly, has at least 2R states.

25



Exponential gap between NFA and DFA size

L, = {w € {0,1}* | w has a 1 k positions from the end}
Recall that L, is accepted by a N with k + 1 states.

Theorem
Every that accepts Ly has at least 2% states.

Claim
F={w e {0,1}*: |w| = k} is a fooling set of size 2¥ for L.

k-ﬁu pogﬂ"}ow o k__ 1
why? XFY Hor ot

oy b
Y’ Y& J}F‘F!f ’5



How do pick a fooling set

How do we pick a fooling set F?

- If x,y arein F and x # y they should be distinguishable! Of
course.

- All strings in F except maybe one should be prefixes of

strings in the language L.
For example if L = {0*1% | k > 0} do not pick 1and 10 (say).

Why?

26



Myhill-Nerode Theorem




One automata to rule them all

“‘Myhill-Nerode Theorem”: A regular language L has a unique
(up to naming) minimal automata, and it can be computed
efficiently once any DFA is given for L.

27



Indistinguishably

Recall:

Definition .
For a language L over ¥ and two strings x,y € ¥* we say that x

and y are distinguishable with respect to L if there is a string
w € £* such that exactly one of xw,yw is in L. x,y are
indistinguishable with respect to L if there is no such w.

Given language L over ¥ define a relation =, over strings in **
as follows: x =, y Iff x and y are indistinguishable with respect

to L.

28



Indistinguishably

Recall:

Definition .
For a language L over ¥ and two strings x,y € ¥* we say that x

and y are distinguishable with respect to L if there is a string
w € £* such that exactly one of xw,yw is in L. x,y are
indistinguishable with respect to L if there is no such w.

Given language L over ¥ define a relation =, over strings in **
as follows: x =, y Iff x and y are indistinguishable with respect

to L.

Definition
X =, ymeansthatVw e X*: xw € L <= yw € L.

In words: x Is equivalent to y under L.

28



Example: Equivalence classes

29



Indistinguishability

Claim
=, IS an equivalence relation over X*.
Proof.
- Reflexive: Vx e X*: Vw € Z*: xw € L <= xw € L.
— X = X.
- Symmetry: x = ythenVw e X" xw el < ywe L
YweXywel < xwel — y=X.
- Transitivity: x =, yandy =, z
YwWerxwel < ywelandVwe X ywel <

7w € L
— YWEYX " XWEL <— zw € L
— X = Z.



Equivalences over automatas...

Claim

=, IS an equivalence relation over X*.

Therefore, =; partitions ¥* into a collection of equivalence
classes.

Definition .
L: A language For a string x € £*, let

Xl=K={yeX* | x=y}

be the equivalence class of x according to L.

Definition . |
[L] = {[x]. | x € £*} is the set of equivalence classes of L.

31



Claim

Let x,y be two distinct strings. If x,y belong to the same
equivalence class of =, then x, y are indistinguishable.
Otherwise they are distinguishable.

32



Strings in the same equivalence class are indistinguishable

Lemma o _
Let X,y be two distinct strings.

X =y <= X,y areindistinguishable for L.

Proof.
X=y = VWwel: xwel < ywel

x and y are indistinguishable for L.

XZ Yy = dweXf:xwelandyw &L

— x and y are distinguishable for L.

33



All strings arriving at a state are in the same class

Lemma
M= (Q,%,d,s,A) a DFA for a language L.

Forany g € A letLg ={w e X* | Vw = §*(s,w) = qg}.

Then, there exists a string x, such that Ly C [x];.

34



An inefficient automata

General idea behind algorithm:

Base case: Given two states, if p and g, If one accepts and the
other rejects, then they are not equivalent.

Recursion: Assuming p LN p’ and g LN q’, If p’ £qg’ then p #g

35



An inefficient automata

do g1 Q2 43 Q4 (s

36



