Pre-lecture brain teaser

Assume L is any regular language. Let's define a new language:

Definition
Flip(L) ={w |w e L,x € ¥*}

’
1

~ - Q l..
é)(ww-plc, : :‘9' /Ol o s e L P ol 78 i P /4 CL')

CS/ECE-374: Lecture 6 - Regular Languages -
Closure Properties

Lecturer: Nickvash Kani
Chat moderator: Samir Khan

February 11, 2021

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Assume L IS any regular language. Let's define a new language:

Definition
Flip(L) = {w | w € L, x=e=="} 15 Hes lmﬁw‘je regulor

x biotse

———aaem

Pre-lecture brain teaser

Assume L is any regular language. Let's define a new language:

Definition
Flip(L) ={w |w e L,x € ¥*}

Yes

Pre-lecture brain teaser

Assume L is any regular language. Let's define a new language:

Definition
Flip(L) ={w |w e L,x € ¥*}

Yes Next problem.

Pre-lecture brain teaser

Assume L is any regular language. Let's define a new language:

Definition
LR ={wR|wel}

Pre-lecture brain teaser

Assume L is any regular language. Let's define a new language:

Definition
LR ={wR|wel}

Also yes.

Closure propeties

Definition
(Informal) A set A is closed under an operation op if applying

op to any elements of A results in an element that also
belongs to A.

Closure propeties

Definition
(Informal) A set A is closed under an operation op if applying

op to any elements of A results in an element that also
belongs to A.

Examples:
Lo+ &':\‘.2— = Z—-“E\‘L
- Integers: closed under +, —, %, but not division.

- Positive integers: closed under + but not under —

- Reqular languages: closed under-union, intersection,

Kleene star,/complement, difference, homomorphism,
w

Inverse homomorphism, reverse, ...

Closure properties of Regular Languages

How do we prove that regular languages are closed under
some new operation?

Closure properties of Regular Languages

How do we prove that regular languages are closed under
some new operation?

Three broad approaches o

Lamg® -
For 093" T2 amey

- Use existing closure properties %lwg,%

Closure properties of Regular Languages

How do we prove that regular languages are closed under
some new operation?
Three broad approaches

- Use existing closure properties
+ L4, Ly, L3, Ly regular implies (Ly — Ly) N (L3 U Ly)* is regular

Closure properties of Regular Languages

How do we prove that regular languages are closed under
some new operation?

Three broad approaches

- Use existing closure properties
+ L4, Ly, L3, Ly regular implies (Ly — Ly) N (L3 U Ly)* is regular

+ Transform regular expressions R R, Llp=P, Ry

Closure properties of Regular Languages

How do we prove that regular languages are closed under
some new operation?

Three broad approaches

- Use existing closure properties
+ L4, Ly, L3, Ly regular implies (Ly — Ly) N (L3 U Ly)* is regular

- Transform regular expressions

- Transform DFAs to NFAs — versatile technique and shows
the power of nondeterminism

Homomorphism closure

Let’s look back at the pre-lecture teaser. Define a function
1 X=0
h(x) =
%) { 0 X =1

This i1s known as a homomorphism - A cipher that is a
one-to-one mapping to one character set to another.

How do we prove h(L) is regular if L is regular?

O — a
| —2 6

Homomorphism closure

Proof Idea: fapJour
z~ L

1. Suppose' R is a regular expression for L.

2. We define Flip(L) =" as a regular expression based off
the regular expressiork or L (using a finite number of
. . (R) . =4
concatenations, unions and Kleene Star) R

3. Thus LF is regular because it has a regular expression.

Thus we reduce the argument to L(h(R)) = h(L(R))

Homomorphism closure

25
Let's define the regular expressioré Inductively by transforming
the operations in R. We see that:

- Base Case: Zero operatorsin RmeansthatR=:a € ¥, ¢,
0. In any case we define RF = h(R) °

- Otherwise R has three potential types of operators to
transform. Splitting R at an operator we see:

RPN = + h(RR) = h(R) (R PorRBe RO hCRD RO
h(R1UR2)—h(R1)Uh(R2) R=R U¥y YF— 1 ey Ukt

B (hf)g)" R.(U‘L%l/k(Kb = L\C_Qu O K‘Z\ = l/l.(ﬂ,,\()‘\.(l,,)

Hence, since we can define) via a regular language, L is
regular.

Regular Languages

Regular languages have three different characterizations

- Inductive definition via base cases and closure under
union, concatenation and Kleene star Swt stone

- Languages accepted by DFAs

- Languages accepted by NFAs

Regular Languages

Regular languages have three different characterizations

- Inductive definition via base cases and closure under
union, concatenation and Kleene star

- Languages accepted by DFAs

- Languages accepted by NFAs

Regular language closed under many operations:

- union, concatenation, Kleene star via inductive definition

or NFAs
- complement, union, intersection via DFAS

- homomorphism, inverse homomorphism, reverse, ...

Different representations allow for flexibility in proofs.

Closure problem - Reverse

Example: REVERSE

Given string w, wX is reverse of w.

For a language L define LR = {wR | w € L} as reverse of L.

Theorem
LR is reqular if L is regular.

10

Example: REVERSE

Given string w, wX is reverse of w.

For a language L define LR = {wR | w € L} as reverse of L.

Theorem
LR is reqular if L is regular.

Infinitely many regular languages!

Proof technique:

- take some finite representation of L such as regular
expression r

- Describe an algorithm A that takes r as input and outputs
a regular expression r’ such that L(r") = (L(r))F.

- Come up with A and prove its correctness.

10

REVERSE via regular expressions

Suppose r is a regular expression for L. How do we create a
regular expression r’ for LR?

1

REVERSE via regular expressions

Suppose r is a regular expression for L. How do we create a
regular expression r’ for LR? Inductively based on recursive
definition of r.

-r=0Qorr=aforsomeacXx (Baa;e, Cose

cr=nrn-+n

Loy devis
Cr=n-n P,gn.b'@ @é?—‘.w_ oW
ey D v o Aosed

opersovs

1

REVERSE via regular expressions

cr=Qorr=aforsomeacy Boe Cic
=g
r=nr+4n.
If ri, 5 are reg expressions for (L(r1))R, (L(r2))" then

I 1 ¢
r—y’“-l'\f"z

“r=r-rn.

If r}, b are reg expressions for (L(r1))R, (L(r2))" then

l]

= , Vi Peke M‘uﬁgﬂ
= (I’1)*. %’:Jm@ff

If r} is reg expressions for (L(rq))* then C

A - <
" =Y ik b T

& Lo regele
r = (0 +10)*(001+ 01)1 then ' = | (100 £ 16 (0 « o1

12

REVERSE via machine transformation

L B
Given DFAM = (Q, X, 4, S,A) wantNFA N'such that

L(N) = (L(M))*".

N should accept w” iff M accepts w

M accepts w iff dy,(s,w) € A
\ P’A

@o LS D
; /y 13

REVERSE via machine transformation

Caveat: Reversing transitions may create an NFA.
14

REVERSE via machine transformation

Proof (DFA to NFA): Let M = (%,Q,s,A, &) be an arbitrary DFA that accepts L. We construct
an NFA M® = (=, QR[sR AR 6%) with e-transitions that accepts LR, intuitively by reversing every
transition in M, and swapping the roles of the start state and the accepting states. Because
M does not have a unique accepting state, we need to introduce a special start state s&, with
e-transitions to each accepting state in M. These are the only e-transitions in M~.

Q*=Qu{s"}
A* = {s}
5R(sR,'e)_=_:4
SRR a)= forallae ™
< 5R(q,e) = forallg €Q
\)‘: J 5R(q,a)={p| q€6(p,a)} forallgeQ and a € &

Routine inductive definition-chasing now implies that the reversal of any sequence qo—q;— - —qy
of transitions in M is a valid sequence q,—q,_;—---—q, of transitions in MR. Because the
transitions retain their labels (but reverse directions), it follows that M accepts any string w if
and only if MR accepts w¥.

We conclude that the NFA M~ acceptwo LR must be regular. O

15

REVERSE via machine transformation

Formal proof: two directions

- w € L(M) implies wR € L(N). Sketch. Let §%(s,w) = g where
g € A. On input w® N non-deterministically transitions
from its start state s’ to g on an e transition, and traces the
reverse of the walk of M on w” and hence reaches s which
is an accepting state of N. Thus N accepts wf

- u € L(N) implies u € L(M). Sketch. If u € N it implies that
s’ transitioned to some g € A on e transition and

16

Closure Problem - Cycle

A more complicated example: CYCLE

CYCLE(L) ={yx | x,y e ¥*,xy € L}

Theorem o
CYCLE(L) I1s regular if L is regular.

Example: L = {abc,374a}

<% KN
CYCLE(L) = gc,a.é/ [:ca»/ 6~‘>Q/ 374}0‘/ o-57%, %0 %7, 74’“3?

17

A more complicated example: CYCLE

CYCLE(L) ={yx | x,y e ¥*,xy € L}

Theorem -
CYCLE(L) I1s regular if L is regular.

Mw {W%"W’*;ow @
2

A more complicated example: CYCLE

CYCLE(L) ={yx | x,y e ¥*,xy € L}

Theorem o
CYCLE(L) I1s regular if L is regular.

Given DFA M for L create NFA N that accepts CYCLE(L).

- N Is a finite state machine, cannot know split of w into xy
and yet has to simulate M on x and y.

- Exploit fact that M is itself a finite state machine. N only
needs to “know” the state dj,(s, x) and there are only finite
number of states in M

18

Construction for CYCLE

Let w = xy and w' = yx.

+ N guesses state g = d5,(s,x) and simulates M on w’" with
start state g.

- N guesses when y ends (at that point M must be in an
accept state) and transitions to a copy of M to simulate M
on remaining part of w’ (which is x)

- N accepts w’ if after second copy of M on x it ends up in
the guessed state g

19

Proving correctness

Exercise: Write down formal description of N in tuple notation
starting with M = (Q, ¥, 9, s,A).

Need to argue that L(N) = CYCLE(L(M))

- If w = xy accepted by M then argue that yx is accepted by
N

- If N accepts w’ then argue that w’ = yx such that xy
accepted by M.

21

Closure Problem - Prefix

Example: PREFIX

Let L be a language over X

Definition
PREFIX(L) = {w | wx € L,x € £*}

22

Example: PREFIX

Let L be a language over X

Definition
PREFIX(L) = {w | wx € L,x € £*}

Theorem _
If L is regular then PREFIX(L) is regular.

22

Example: PREFIX

Let L be a language over X

Definition
PREFIX(L) = {w | wx € L,x € £*}

Theorem _
If L is regular then PREFIX(L) is regular.

Let M = (Q, %, 6,s,A) be a DFA that recognizes L

22

Example: PREFIX
Let L be a language over X
Definition ‘{\
PREFIX(L) = {w | wx € L,x € X*}

Theorem
If L is regular then PREFIX(L) is regula 5 —>
SL

Let M =(Q, X%, d,s,A) be a DFA that recognize

X={g € Q|scanreachqgin M}

22

Example: PREFIX

Let L be a language over X

Definition
PREFIX(L) = {w | wx € L,x € ¥*} lor | |
Theorem = ? -

If L is regular then PREFIX(L) is regular.
Let M = (Q, %, 6,s,A) be a DFA that recognizes L

X={g € Q|scanreachqgin M}
Y ={q € Q| g can reach some state in A¥ %>

22

Example: PREFIX

Let L be a language over X

Definition
PREFIX(L) = {w | wx € L,x € £*}

Theorem _
If L is regular then PREFIX(L) is regular.

Let M = (Q, %, 6,s,A) be a DFA that recognizes L

X={g € Q|scanreachqgin M}
Y ={q € Q| g can reach some state in A}
Z=XNY

F
Create new BjFﬁe/\/l’ = (Q,%,9,s,2)

22

Example: PREFIX

Let L be a language over X

Definition
PREFIX(L) = {w | wx € L,x € £*}

Theorem _
If L is regular then PREFIX(L) is regular.

Let M = (Q, %, 6,s,A) be a DFA that recognizes L

X={g € Q|scanreachqgin M}
Y ={q € Q| g can reach some state in A}
Z=XNY

Create new DFAM = (Q, %, 0,s,7)
Claim: L(M") = PREFIX(L). Efrla,mﬂ

22

Exercise: SUFFIX

Let L be a language over X

Deﬁnltlon

SUFFIX(L) =4{w | xw € L, x € X}
Prove the following: m@

Theorem .
If Lis regular then SUFFIX(L) is regular.

23

Exercise: SUFFIX

Let L be a language over X

Definition
SUFFIX(L) =4{w | xw € [,x € ¥*}

Prove the following:

Theorem .
If L is regular then SUFFIX(L) is regular.

Same idea as PREFIX(L)

X={g € Q|scanreachgin M}
Y ={g € Q| g can reach some state in A}
Z=XNY o

J
With one major difference: [A‘ = {@/ Z/ 5/ g y /‘4)
Uﬁ’(é‘,é) = 23

Application of closure properties to non-regularity

We can also prove non-regularity using the techniques above.
For instance:

24

Application of closure properties to non-regularity

We can also prove non-regularity using the techniques above.
For instance:

Ly ={0"1"|n >0}
L, = {w € {0,1}* | #o(w) = #1(w)}
L3 = {0V]i#}

24

Application of closure properties to non-regularity

We can also prove non-regularity using the techniques above.
For instance:

L1 = {0™" | n > 0}
Ly = {w € {0,1}" | #o(w) = #1(w)} Z W%LJWZ
L3 = {0V |i#j}

L1 1s not regular. Can we use that fact to prove L, and L, are not
regular without going through the fooling set argument?

24

Application of closure properties to non-regularity

We can also prove non-regularity using the techniques above.
For instance:

Ly ={0"1" | n >0}
L, = {w € {0,1}* | #o(w) = #1(w)}
Ls = {0'V | i #j}

L1 1s not regular. Can we use that fact to prove L, and L, are not

regular without going through the fooling set argument?
rgang T Lz wes Sepdar e WY hes ko be reptes
|/ ¢ Lz is wol ?9:.}0-» Haw L, does w ¥ tuve 4o bo

- L1 =L, N 0*1* hence If L, Is regular then L4 Is regular, a (S

contradiction.

24

Application of closure properties to non-regularity

We can also prove non-regularity using the techniques above.
For instance:

Ly ={0"1" | n >0}
L, = {w € {0,1}* | #o(w) = #1(w)}
Ls = {0'V | i #j}

L1 1s not regular. Can we use that fact to prove L, and L, are not
regular without going through the fooling set argument?

L1 =L, N0*1" hence If L, is regular then L4 Is regular, a
contradiction.

L1 = L3 N 0*1* hence if L3 is regular then L is regular, a

.. 24
contradiction

