Pre-lecture brain teaser

Assume L is any regular language. Let's define a new language:

Definition
Flip(L) ={w |w e L,x € ¥*}
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Pre-lecture brain teaser

Assume L IS any regular language. Let's define a new language:

Definition
Flip(L) = {w | w € L, x=e=="} 15 Hes lmﬁw‘je regulor
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Pre-lecture brain teaser

Assume L is any regular language. Let's define a new language:

Definition
Flip(L) ={w |w e L,x € ¥*}

Yes



Pre-lecture brain teaser

Assume L is any regular language. Let's define a new language:

Definition
Flip(L) ={w |w e L,x € ¥*}

Yes Next problem.
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Pre-lecture brain teaser

Assume L is any regular language. Let's define a new language:

Definition
LR ={wR|wel}

Also yes.



Closure propeties

Definition
(Informal) A set A is closed under an operation op if applying

op to any elements of A results in an element that also
belongs to A.



Closure propeties

Definition
(Informal) A set A is closed under an operation op if applying

op to any elements of A results in an element that also
belongs to A.

Examples:
Lo+ &':\‘.2— = Z—-“E\‘L
- Integers: closed under +, —, %, but not division.

- Positive integers: closed under + but not under —

- Reqular languages: closed under-union, intersection,

Kleene star,/complement, difference, homomorphism,
w

Inverse homomorphism, reverse, ...



Closure properties of Regular Languages

How do we prove that regular languages are closed under
some new operation?
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Closure properties of Regular Languages

How do we prove that regular languages are closed under
some new operation?

Three broad approaches

- Use existing closure properties
+ L4, Ly, L3, Ly regular implies (Ly — Ly) N (L3 U Ly)* is regular

- Transform regular expressions

- Transform DFAs to NFAs — versatile technique and shows
the power of nondeterminism



Homomorphism closure

Let’s look back at the pre-lecture teaser. Define a function
1 X=0
h(x) =
%) { 0 X =1

This i1s known as a homomorphism - A cipher that is a
one-to-one mapping to one character set to another.

How do we prove h(L) is regular if L is regular?
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Homomorphism closure

Proof Idea: fapJour
z~ L

1. Suppose' R is a regular expression for L.

2. We define Flip(L) =" as a regular expression based off
the regular expressiork or L (using a finite number of
. . (R) . =4
concatenations, unions and Kleene Star) R

3. Thus LF is regular because it has a regular expression.

Thus we reduce the argument to L(h(R)) = h(L(R))



Homomorphism closure

25
Let's define the regular expressioré Inductively by transforming
the operations in R. We see that:

- Base Case: Zero operatorsin RmeansthatR=:a € ¥, ¢,
0. In any case we define RF = h(R) °

- Otherwise R has three potential types of operators to
transform. Splitting R at an operator we see:

RPN = + h(RR) = h(R) (R PorRBe RO hCRD RO
h(R1UR2)—h(R1)Uh(R2) R=R U¥y YF— 1 ey Ukt

B (hf)g)" R.(U‘L%l/k( Kb = L\C_Qu O K‘Z\ = l/l.(ﬂ,,\()‘\.(l,,)

Hence, since we can define ) via a regular language, L is
regular.



Regular Languages

Regular languages have three different characterizations

- Inductive definition via base cases and closure under
union, concatenation and Kleene star Swt stone

- Languages accepted by DFAs

- Languages accepted by NFAs




Regular Languages

Regular languages have three different characterizations

- Inductive definition via base cases and closure under
union, concatenation and Kleene star

- Languages accepted by DFAs

- Languages accepted by NFAs

Regular language closed under many operations:

- union, concatenation, Kleene star via inductive definition

or NFAs
- complement, union, intersection via DFAS

- homomorphism, inverse homomorphism, reverse, ...

Different representations allow for flexibility in proofs.



Closure problem - Reverse




Example: REVERSE

Given string w, wX is reverse of w.

For a language L define LR = {wR | w € L} as reverse of L.

Theorem
LR is reqular if L is regular.

10



Example: REVERSE

Given string w, wX is reverse of w.

For a language L define LR = {wR | w € L} as reverse of L.

Theorem
LR is reqular if L is regular.

Infinitely many regular languages!

Proof technique:

- take some finite representation of L such as regular
expression r

- Describe an algorithm A that takes r as input and outputs
a regular expression r’ such that L(r") = (L(r))F.

- Come up with A and prove its correctness.

10



REVERSE via regular expressions

Suppose r is a regular expression for L. How do we create a
regular expression r’ for LR?

1



REVERSE via regular expressions

Suppose r is a regular expression for L. How do we create a
regular expression r’ for LR? Inductively based on recursive
definition of r.

-r=0Qorr=aforsomeacXx (Baa;e, Cose

cr=nrn-+n

Loy devis
Cr=n-n P,gn.b'@ @é?—‘.w_ oW
ey D v o Aosed

opersovs
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REVERSE via regular expressions

cr=Qorr=aforsomeacy Boe Cic
=g
r=nr+4n.
If ri, 5 are reg expressions for (L(r1))R, (L(r2))" then

I 1 ¢
r—y’“-l'\f"z

“r=r-rn.

If r}, b are reg expressions for (L(r1))R, (L(r2))" then

l ]

= , Vi Peke M‘uﬁgﬂ
= (I’1)*. %’:Jm@ff

If r} is reg expressions for (L(rq))* then C

A - <
" =Y ik b T

& Lo regele
r = (0 +10)*(001+ 01)1 then ' = | (100 £ 16 (0 « o1
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REVERSE via machine transformation

L B
Given DFAM = (Q, X, 4, S,A) wantNFA N'such that

L(N) = (L(M))*".

N should accept w” iff M accepts w

M accepts w iff dy,(s,w) € A
\ P’A

@o LS D
; /y 13




REVERSE via machine transformation

Caveat: Reversing transitions may create an NFA.
14



REVERSE via machine transformation

Proof (DFA to NFA): Let M = (%,Q,s,A, &) be an arbitrary DFA that accepts L. We construct
an NFA M® = (=, QR[sR AR 6%) with e-transitions that accepts LR, intuitively by reversing every
transition in M, and swapping the roles of the start state and the accepting states. Because
M does not have a unique accepting state, we need to introduce a special start state s&, with
e-transitions to each accepting state in M. These are the only e-transitions in M~.

Q*=Qu{s"}
A* = {s}
5R(sR,'e)_=_:4
SRR a)= forallae ™
< 5R(q,e) = forallg €Q
\)‘: J 5R(q,a)={p| q€6(p,a)} forallgeQ and a € &

Routine inductive definition-chasing now implies that the reversal of any sequence qo—q;— - —qy
of transitions in M is a valid sequence q,—q,_;—---—q, of transitions in MR. Because the
transitions retain their labels (but reverse directions), it follows that M accepts any string w if
and only if MR accepts w¥.

We conclude that the NFA M~ acceptwo LR must be regular. O

15



REVERSE via machine transformation

Formal proof: two directions

- w € L(M) implies wR € L(N). Sketch. Let §%(s,w) = g where
g € A. On input w® N non-deterministically transitions
from its start state s’ to g on an e transition, and traces the
reverse of the walk of M on w” and hence reaches s which
is an accepting state of N. Thus N accepts wf

- u € L(N) implies u € L(M). Sketch. If u € N it implies that
s’ transitioned to some g € A on e transition and

16



Closure Problem - Cycle




A more complicated example: CYCLE

CYCLE(L) ={yx | x,y e ¥*,xy € L}

Theorem o
CYCLE(L) I1s regular if L is regular.

Example: L = {abc,374a}

<% KN
CYCLE(L) = gc,a.é/ [:ca»/ 6~‘>Q/ 374}0‘/ o-57%, %0 %7, 74’“3?

17



A more complicated example: CYCLE

CYCLE(L) ={yx | x,y e ¥*,xy € L}

Theorem -
CYCLE(L) I1s regular if L is regular.

Mw {W%"W’*;ow @
2




A more complicated example: CYCLE

CYCLE(L) ={yx | x,y e ¥*,xy € L}

Theorem o
CYCLE(L) I1s regular if L is regular.

Given DFA M for L create NFA N that accepts CYCLE(L).

- N Is a finite state machine, cannot know split of w into xy
and yet has to simulate M on x and y.

- Exploit fact that M is itself a finite state machine. N only
needs to “know” the state dj,(s, x) and there are only finite
number of states in M

18



Construction for CYCLE

Let w = xy and w' = yx.

+ N guesses state g = d5,(s,x) and simulates M on w’" with
start state g.

- N guesses when y ends (at that point M must be in an
accept state) and transitions to a copy of M to simulate M
on remaining part of w’ (which is x)

- N accepts w’ if after second copy of M on x it ends up in
the guessed state g

19






Proving correctness

Exercise: Write down formal description of N in tuple notation
starting with M = (Q, ¥, 9, s,A).

Need to argue that L(N) = CYCLE(L(M))

- If w = xy accepted by M then argue that yx is accepted by
N

- If N accepts w’ then argue that w’ = yx such that xy
accepted by M.

21



Closure Problem - Prefix




Example: PREFIX

Let L be a language over X

Definition
PREFIX(L) = {w | wx € L,x € £*}

22
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Definition
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Example: PREFIX

Let L be a language over X

Definition
PREFIX(L) = {w | wx € L,x € £*}

Theorem _
If L is regular then PREFIX(L) is regular.

Let M = (Q, %, 6,s,A) be a DFA that recognizes L

22



Example: PREFIX
Let L be a language over X
Definition ‘{\
PREFIX(L) = {w | wx € L,x € X*}

Theorem
If L is regular then PREFIX(L) is regula 5 —>
SL

Let M =(Q, X%, d,s,A) be a DFA that recognize

X={g € Q|scanreachqgin M}

22



Example: PREFIX

Let L be a language over X

Definition
PREFIX(L) = {w | wx € L,x € ¥*} lor | |
Theorem = ? -

If L is regular then PREFIX(L) is regular.
Let M = (Q, %, 6,s,A) be a DFA that recognizes L

X={g € Q|scanreachqgin M}
Y ={q € Q| g can reach some state in A¥ %>
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Example: PREFIX

Let L be a language over X

Definition
PREFIX(L) = {w | wx € L,x € £*}

Theorem _
If L is regular then PREFIX(L) is regular.

Let M = (Q, %, 6,s,A) be a DFA that recognizes L

X={g € Q|scanreachqgin M}
Y ={q € Q| g can reach some state in A}
Z=XNY

F
Create new BjFﬁe/\/l’ = (Q,%,9,s,2)
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Example: PREFIX

Let L be a language over X

Definition
PREFIX(L) = {w | wx € L,x € £*}

Theorem _
If L is regular then PREFIX(L) is regular.

Let M = (Q, %, 6,s,A) be a DFA that recognizes L

X={g € Q|scanreachqgin M}
Y ={q € Q| g can reach some state in A}
Z=XNY

Create new DFAM = (Q, %, 0,s,7)
Claim: L(M") = PREFIX(L). Efrla,mﬂ

22



Exercise: SUFFIX

Let L be a language over X

Deﬁnltlon

SUFFIX(L) =4{w | xw € L, x € X}
Prove the following: m@

Theorem .
If Lis regular then SUFFIX(L) is regular.

23



Exercise: SUFFIX

Let L be a language over X

Definition
SUFFIX(L) =4{w | xw € [,x € ¥*}

Prove the following:

Theorem .
If L is regular then SUFFIX(L) is regular.

Same idea as PREFIX(L)

X={g € Q|scanreachgin M}
Y ={g € Q| g can reach some state in A}
Z=XNY o

J
With one major difference: [A‘ = {@/ Z/ 5/ g y /‘4)
Uﬁ’(é‘,é) = 23



Application of closure properties to non-regularity

We can also prove non-regularity using the techniques above.
For instance:

24



Application of closure properties to non-regularity

We can also prove non-regularity using the techniques above.
For instance:

Ly ={0"1"|n >0}
L, = {w € {0,1}* | #o(w) = #1(w)}
L3 = {0V ]i#}
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Application of closure properties to non-regularity

We can also prove non-regularity using the techniques above.
For instance:

L1 = {0™" | n > 0}
Ly = {w € {0,1}" | #o(w) = #1(w)} Z W%LJWZ
L3 = {0V |i#j}

L1 1s not regular. Can we use that fact to prove L, and L, are not
regular without going through the fooling set argument?
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Application of closure properties to non-regularity

We can also prove non-regularity using the techniques above.
For instance:

Ly ={0"1" | n >0}
L, = {w € {0,1}* | #o(w) = #1(w)}
Ls = {0'V | i #j}

L1 1s not regular. Can we use that fact to prove L, and L, are not

regular without going through the fooling set argument?
rgang T Lz wes Sepdar e WY hes ko be reptes
|/ ¢ Lz is wol ?9:.}0-» Haw L, does w ¥ tuve 4o bo

- L1 =L, N 0*1* hence If L, Is regular then L4 Is regular, a (S

contradiction.
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Application of closure properties to non-regularity

We can also prove non-regularity using the techniques above.
For instance:

Ly ={0"1" | n >0}
L, = {w € {0,1}* | #o(w) = #1(w)}
Ls = {0'V | i #j}

L1 1s not regular. Can we use that fact to prove L, and L, are not
regular without going through the fooling set argument?

L1 =L, N0*1" hence If L, is regular then L4 Is regular, a
contradiction.

L1 = L3 N 0*1* hence if L3 is regular then L is regular, a

.. 24
contradiction



