Pre-lecture brain teaser

Find the regular expressions for the following languages:

- All strings that end in 1011
- All strings that contain 101 or 010 as a substring.

- All strings that do not contain 111 as a substring.
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Pre-lecture brain teaser

Find the regular expressions for the following languages:

® All strings that end in 1011
(De 1y 103

- All strings that contain 101 or 010 as a substring.
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Regular Languages, DFAs, NFAs

Theorem .
Languages accepted byFDFAs, NFAS, @nd regular expressions

are the same. v \/
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Regular Languages, DFAs, NFAs

Theorem '
Languages accepted by DFAs, NFAs, and regular expressions

are the same.

- DFAs are special cases of NFAs (easy)
- NFAs accept regular expressions (seen)
- DFAs accept languages accepted by NFAs (shortly)

- Regular expressions for languages accepted by DFAs
(shown previously)



Thompson's algorithm

Given two s sand t:

L =L UL L= (Ls)*




Regular expression to DFA example

Let’'s take a regular expression and convert it to a DFA.
(0 + 1)*(101+ 010)(0 + 1)*

(0+1)*(010 + 101)(0+1)*




Regular expression to DFA example

Let’'s take a regular expression and convert it to a DFA.
(0 + 1)*(101+ 010)(0 + 1)*

(0+1)*(010 + 101)(0+1)*

Using the concatenation rule:

(O+1)°

(010+101)



Regular expression to T FA example

Find §FA for (0 + 1)

(0+1)"



Regular expression to DFA example

Find DFA for (0 4+ 1)*

a1




Regular expression to DFA example

Find ﬂFA for (0 +1)*
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Regular expression to DFA example

Find BFA for (101 + 010)

(010+101)



Regular expression to DFA example

Find RFA for (101 + 010)

(010+101)




Regular expression to DFA example

Find PFA for (101 + 010)

(010+101) 0& *@
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Regular expression to DFA example

Let’'s take a regular expression and convert it to a DFA.
(0 + 1)*(101+ 010)(0 + 1)*




Regular expression to DFA example

Let’'s take a regular expression and convert it to a DFA.
(0 + 1)*(101+ 010)(0 + 1)*




Regular expression to DFA example

Let’'s take a regular expression and convert it to a DFA.
(0 + 1)*(101+ 010)(0 + 1)*




Equivalence of NFAs and DFAs
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Another Way to look at NFAs

Symbol Read:




Another Way to look at NFAs

s 010110 accepted?
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Another Way to look at NFAs

Is 010110 accepted?

*w\/@
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Another Way to look at NFAs

Is 010110 accepted?
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Another Way to look at NFAs

s 010110 accepted?
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Another Way to look at NFAs

s 010110 accepted?
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Another Way to look at NFAs

s 010110 accepted?
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Another Way to look at NFAs

s 010110 accepted?
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The idea of the conversion of NFA to
DFA




Equivalence of NFAs and DFAs

Theorem :
For everysNFA N there is a DFA M such that L(M) = L(N).
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DFAs are memoryless...

knows only its current state.
- The state is the memory.

- To design a , answer the question:
What minimal info needed to solve problem.
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Simulating NFA

C‘ fs know many states at once on input 010110.
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The state of the NFA

It Is easy to state that the state of the automata Is the states
that it might be situated at.
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The state of the NFA

It Is easy to state that the state of the automata Is the states
that it might be situated at.

— 07 01 \

configuration: A set of states the automata might be In.
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The state of the NFA

It Is easy to state that the state of the automata Is the states
that it might be situated at.

configuration: A set of states the automata might be In.

Possible configurations: P(q) =0, {90}, {0, q1}.-

5{‘{,/&'\ "GPC‘Z)

14



The state of the NFA

It Is easy to state that the state of the automata Is the states
that it might be situated at.

start

configuration: A set of states the automata might be In.
Possible configurations: P(q) =0, {90}, {0, q1}.-
Big idea: Build a DFA on the configurations.
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Example
0/ 0/
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Example
0,1 0,1
e

0/1 01

start@ ! M ! @ ['/ OIC), ,.1

If receives 0 :
01 01
| @/\/\& (it 0,0
If receives 1: - O
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Simulating an NFA by a DFA

DFA
- Think of a peeeram with fixed memory that needs to

simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?
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Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to
simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?

* It needs to know at least 6*(s, x), the set of states that N
could be in after reading x
- Is it sufficient?

17



Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to
simulate NFA N on input w.

- What does it need to store after seeing a prefix x of w?

* It needs to know at least 6*(s,x), the set of states that N
could be in after reading x

- Is it sufficient? Yes, if it can compute §*(s, xa) after seeing
another symbol a in the input.

- When should the program accept a string w?
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Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to
simulate NFA N on input w.

- What does it need to store after seeing a prefix x of w?

* It needs to know at least 6*(s, x), the set of states that N
could be in after reading x

- Is it sufficient? Yes, if it can compute 6*(s, xa) after seeing
another symbol a in the input.

- When should the program accept a string w? If
0 (s,w)NA £ 0.

Key Observation: DFA M simulating N should know current

configuration of N.

State space of the DFA is P(Q).
17



DFA from NFA
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Formal Tuple Notation for NFA

Definition
A non-deterministic finite automata (NFA) N = (Q, %, 4,5,A) is a

five tuple where
- Q Is a finite set whose elements are called states,

- 2 Is a finite set called the input alphabet,

- §:Q x X U{e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

- s € Q Is the start state,
- A C Qis the set of accepting/final states.

6(g,a) fora € X U {e} Is a subset of Q — a set of states.
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Algorithm for converting NFA to DFA




Extending the transition function to strings

Definition
For NFAN =(Q, %, 4,s,A) and g € Q the ereach(q) is the set of

all states that g can reach using only e-transitions.

Definition
Inductive definition of §* : Q x ¥* — P(Q):

- ifw=¢, 0"(q,w) = ereach(q)

- Ifw=awhereaeX:

5*(q,a):ereach( g 5(p,a)>

. p€eereach(q)
- Ifw = ax:

5*(q,w):ereach( g g 5*(r,x))

peereach(q) redé*(p,a)
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Formal definition of language accepted by

Definition .
A string w is accepted by NFA N if §x5(s, w) N A # (.

Definition _
The language L(N) accepted by a NFAN = (Q, X, d,S,A) IS

{wex*|6*(s,w)NA ().
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Subset Construction

N=(Q,%,s,d,A). We create a D= (Q,%,d, s A as
follows:

. Q' = L6
+ 5 = grepd () = & 5‘63
= fRe @l wha 2 @F

- 0'(X,a) = Uzé)gC(*CZ/ o)
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Algorithm for converting NFA into
regular expression



Stage 0: Input
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Stage 1: Normalizing

renulawr PO
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Stage 2: Remove state A
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Stage 4: Redrawn without old edges
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Stage 4: Removing B
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Stage 5: Redraw
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Stage 6: Removing C

(ab*a +b)(a+b) ¢
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Stage 7: Redraw




Stage 8: Extract regular expression

@ (ab*a +b)(a+Db)" :

Thus, this automata is equivalent to the regular expression

(ab*a + b)(a + b)".
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