Pre-lecture brain teaser

Find the regular expressions for the following languages:

- All strings that end in 1011
- All strings that contain 101 or 010 as a substring.

- All strings that do not contain 111 as a substring.

CS/ECE-374: Lecture 5 - RegExp-DFA-NFA
Equivalence

Lecturer: Nickvash Kani
Chat moderator: Samir Khan

February 09, 2021

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Find the regular expressions for the following languages:

® All strings that end in 1011
(De 1y 103

- All strings that contain 101 or 010 as a substring.
(oel)‘*’ <DIO <o) o+ 1*

“+ be

- All strings that do not contain 111 as a substrmg
OO0 | oo || olloo©

((5 L l\') O*j& O*((g+ [-et[} 0-'-‘%‘
@Jel«ﬂ <0+Cl‘* ”7)%

Regular Languages, DFAs, NFAs

Theorem .
Languages accepted byFDFAs, NFAS, @nd regular expressions

are the same. v \/

M

Regular Languages, DFAs, NFAs

Theorem '
Languages accepted by DFAs, NFAs, and regular expressions

are the same.

- DFAs are special cases of NFAs (easy)
- NFAs accept regular expressions (seen)
- DFAs accept languages accepted by NFAs (shortly)

- Regular expressions for languages accepted by DFAs
(shown previously)

Thompson's algorithm

Given two s sand t:

L =L UL L= (Ls)*

Regular expression to DFA example

Let’'s take a regular expression and convert it to a DFA.
(0 + 1)*(101+ 010)(0 + 1)*

(0+1)*(010 + 101)(0+1)*

Regular expression to DFA example

Let’'s take a regular expression and convert it to a DFA.
(0 + 1)*(101+ 010)(0 + 1)*

(0+1)*(010 + 101)(0+1)*

Using the concatenation rule:

(O+1)°

(010+101)

Regular expression to T FA example

Find §FA for (0 + 1)

(0+1)"

Regular expression to DFA example

Find DFA for (0 4+ 1)*

a1

Regular expression to DFA example

Find ﬂFA for (0 +1)*

£\
(0+1)" .s 'E (3

Regular expression to DFA example

Find BFA for (101 + 010)

(010+101)

Regular expression to DFA example

Find RFA for (101 + 010)

(010+101)

Regular expression to DFA example

Find PFA for (101 + 010)

(010+101) 0& *@
oL

Regular expression to DFA example

Let’'s take a regular expression and convert it to a DFA.
(0 + 1)*(101+ 010)(0 + 1)*

Regular expression to DFA example

Let’'s take a regular expression and convert it to a DFA.
(0 + 1)*(101+ 010)(0 + 1)*

Regular expression to DFA example

Let’'s take a regular expression and convert it to a DFA.
(0 + 1)*(101+ 010)(0 + 1)*

Equivalence of NFAs and DFAs

I e —

Another Way to look at NFAs

Symbol Read:

Another Way to look at NFAs

s 010110 accepted?

10

Another Way to look at NFAs

Is 010110 accepted?

*w\/@

10

Another Way to look at NFAs

Is 010110 accepted?

*w\/é

01

10

Another Way to look at NFAs

s 010110 accepted?

7 o000
o *1@/\2/.W©

10

Another Way to look at NFAs

s 010110 accepted?

10

Another Way to look at NFAs

s 010110 accepted?

1) 0)]

A

A A

10

Another Way to look at NFAs

s 010110 accepted?

01

0 >
0,1 0,1
SN0,
0,1 0,1
N S0 0
0,1 0,1

1 0 1

start

01 01

start

07 01

start‘a ! /q_W\ 0 ! 6
0 :

10

The idea of the conversion of NFA to
DFA

Equivalence of NFAs and DFAs

Theorem :
For everysNFA N there is a DFA M such that L(M) = L(N).

1

DFAs are memoryless...

knows only its current state.
- The state is the memory.

- To design a , answer the question:
What minimal info needed to solve problem.

12

Simulating NFA

C‘ fs know many states at once on input 010110.
7Y /

-9 0@ @ . @ e 6

\'alrt'a(B C 1 6 3 6
start u start u

01

startig ! w ! 6

13

The state of the NFA

It Is easy to state that the state of the automata Is the states
that it might be situated at.

14

The state of the NFA

It Is easy to state that the state of the automata Is the states
that it might be situated at.

— 07 01 \

configuration: A set of states the automata might be In.

14

The state of the NFA

It Is easy to state that the state of the automata Is the states
that it might be situated at.

configuration: A set of states the automata might be In.

Possible configurations: P(q) =0, {90}, {0, q1}.-

5{‘{,/&'\ "GPC‘Z)

14

The state of the NFA

It Is easy to state that the state of the automata Is the states
that it might be situated at.

start

configuration: A set of states the automata might be In.
Possible configurations: P(q) =0, {90}, {0, q1}.-
Big idea: Build a DFA on the configurations.

14

Example
0/ 0/
1 0 /1 1 &
start# a1 4z ds
OO0

01 01
start@ T (a2 g é EL‘@‘.O,C;S
If receives O : e Q
0] 01
start@ ! /Ch\ 0 @ ! @ [“/ L ‘/Ol
If recelves 1: ——

15

Example
0,1 0,1
e

0/1 01

start@ ! M ! @ ['/ OIC), ,.1

If receives 0 :
01 01
| @/\/\& (it 0,0
If receives 1: - O

16

Simulating an NFA by a DFA

DFA
- Think of a peeeram with fixed memory that needs to

simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?

17

Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to
simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?

* It needs to know at least 6*(s, x), the set of states that N
could be in after reading x
- Is it sufficient?

17

Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to
simulate NFA N on input w.

- What does it need to store after seeing a prefix x of w?

* It needs to know at least 6*(s,x), the set of states that N
could be in after reading x

- Is it sufficient? Yes, if it can compute §*(s, xa) after seeing
another symbol a in the input.

- When should the program accept a string w?

17

Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to
simulate NFA N on input w.

- What does it need to store after seeing a prefix x of w?

* It needs to know at least 6*(s, x), the set of states that N
could be in after reading x

- Is it sufficient? Yes, if it can compute 6*(s, xa) after seeing
another symbol a in the input.

- When should the program accept a string w? If
0 (s,w)NA £ 0.

Key Observation: DFA M simulating N should know current

configuration of N.

State space of the DFA is P(Q).
17

DFA from NFA

: |
0] /i\ ’I 01 0]
‘‘‘‘‘ “@“ M/%

Formal Tuple Notation for NFA

Definition
A non-deterministic finite automata (NFA) N = (Q, %, 4,5,A) is a

five tuple where
- Q Is a finite set whose elements are called states,

- 2 Is a finite set called the input alphabet,

- §:Q x X U{e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

- s € Q Is the start state,
- A C Qis the set of accepting/final states.

6(g,a) fora € X U {e} Is a subset of Q — a set of states.

19

Algorithm for converting NFA to DFA

Extending the transition function to strings

Definition
For NFAN =(Q, %, 4,s,A) and g € Q the ereach(q) is the set of

all states that g can reach using only e-transitions.

Definition
Inductive definition of §* : Q x ¥* — P(Q):

- ifw=¢, 0"(q,w) = ereach(q)

- Ifw=awhereaeX:

5*(q,a):ereach(g 5(p,a)>

. p€eereach(q)
- Ifw = ax:

5*(q,w):ereach(g g 5*(r,x))

peereach(q) redé*(p,a)
20

Formal definition of language accepted by

Definition .
A string w is accepted by NFA N if §x5(s, w) N A # (.

Definition _
The language L(N) accepted by a NFAN = (Q, X, d,S,A) IS

{wex*|6*(s,w)NA ().

21

Subset Construction

N=(Q,%,s,d,A). We create a D= (Q,%,d, s A as
follows:

. Q' = L6
+ 5 = grepd () = & 5‘63
= fRe @l wha 2 @F

- 0'(X,a) = Uzé)gC(*CZ/ o)

22

Algorithm for converting NFA into
regular expression

Stage 0: Input

23

Stage 1: Normalizing

renulawr PO

24

Stage 2: Remove state A

25

Stage 4: Redrawn without old edges

26

Stage 4: Removing B

27

Stage 5: Redraw

28

Stage 6: Removing C

(ab*a +b)(a+b) ¢

29

Stage 7: Redraw

Stage 8: Extract regular expression

@ (ab*a +b)(a+Db)" :

Thus, this automata is equivalent to the regular expression

(ab*a + b)(a + b)".

31

