Pre-lecture brain teaser

Find the regular expression for the language containing all
binary strings that do not contain the subsequence 111000

CS/ECE-374: Lecture 4 - NFAs

Lecturer: Nickvash Kani
Chat moderator: Samir Khan

February 04, 2021

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Find the regular expression for the language containing all
Cjinary strings that do not contain the subsequence 111000

o ﬁ% oL voo»ﬁ subs eqers llllOOO | 10
(% Q v

l} Mj' s, oo

1,

Qb nt Q@ (1
&st
*‘to"-e NI e 1S 1P 18318 "ot

1385 Pkt

Simplifying DFAs

0 0 0

: : : 0/
start ®1®1®1 7 OOO

Simplifying DFAs

0 0 1 1 1 0,1
f\l a)

d [
—H—]] ! T

What if we draw the above figure as:

0 0 0
() () (o) @ @

. AReras
What If we draw the above figure as: Lomguope®
L= L+ l(-('”//‘

€O« 0O w=0 [l o ltl oD

°* e

What does this mean?

Non-deterministic finite automata
(NFA) Introduction

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we'll talk about automata whose logic is not
deterministic.

start

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we'll talk about automata whose logic is not
deterministic.

start

But first.... what the heck is non-determinism?

Non-determinism in computing

Non-determinism is a special
property of algorithms.

An algorithm that is capable of
taking multiple states

Deterministic Non-Deterministic
concurrently. Whenever it Tl T N,
reaches a choice, it takes both ¢ a“ept—’/,f\f\"
paths. o) ¢ o) S
. \o—reject
If there is a path for the string v e |+ et
£ o reject

to be accepted by the machine,
then the string is part of the
language.

NFA acceptance: Informal

Informal definition: An NFA N accepts a string w iff some
accepting state is reached by N from the start state on input w.

NFA acceptance: Informal

Informal definition: An NFA N accepts a string w iff some
accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by
L(N) and defined as: L(N) = {w | N accepts w}.

NFA acceptance: Example

start

- 1s 010110 accepted?

NFA acceptance: Example

Symbol Read:

01 0,1

|
[} &

Is 010110 accepted?

NFA acceptance: Example

start

- 1s 010110 accepted? \b,

NFA acceptance: Example

start

- 1s 010110 accepted?
5 ?
Is 010 accepted }\)O

NFA acceptance: Example

0,1 0,

1 0 1

- 1s 010110 accepted?
- Is 010 accepted?
+ 15101 accepted?\[eg

NFA acceptance: Example

0,

- 1s 010110 accepted?

- Is 010 accepted?

- 1s 101 accepted?

- 1s 10011 accepted? \{eﬁ

NFA acceptance: Example

start

- 1s 010110 accepted?

- Is 010 accepted?

- 1s 101 accepted?

- 1s 10011 accepted?

- What is the language accepted by N?

Al o wibe US o Lo o sihstag

NFA acceptance: Example

start

- 1s 010110 accepted?

- Is 010 accepted?

- 1s 101 accepted?

- 1s 10011 accepted?

- What is the language accepted by N?

NFA acceptance: Example

- 1s 010110 accepted?

- Is 010 accepted?

- 1s 101 accepted?

- 1s 10011 accepted?

- What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string
IS accepted than to show that a string is not accepted.

Formal definition of NFA

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) INE=N(QNE0,S3AN s a

five tuple where

10

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, 4,5,A) is a

five tuple where

- Q Is a finite set whose elements are called states,

10

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, 4,5,A) is a

five tuple where

- Q Is a finite set whose elements are called states,

- 2 Is a finite set called the input alphabet,

10

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, 4,5,A) is a

five tuple where

- Q Is a finite set whose elements are called states,
- 2 Is a finite set called the input alphabet,

- §:Q x XU{e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

10

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, 4,5,A) is a

five tuple where

- Q Is a finite set whose elements are called states,
- 2 Is a finite set called the input alphabet,

- §:Q x XU{e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

P(Q)?

10

Reminder: Power set

Q: a set. Power set of Q is: P(Q) =29 = {X | X C Q} is set of all
subsets of Q.

Example
Q={1,2,3,4}

{1,2,3,4}
[2,3,4},11,3,4} ,{1,2,4},{1,2,3} ,
P(Q) =9 {12}, {13}, {1,4},{2,3},{2,4},{3, 4},

{1742} 43} . {4},

\ U ,

-~

1

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, 4,5,A) is a

five tuple where

- Q Is a finite set whose elements are called states,

- 2 Is a finite set called the input alphabet,

- 5:Qx Zgg% P(Q) is the transition function (here

P(Q) is the power set of Q), 6(@ D = §q, 23
o lo cbwracte

12

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, 4,5,A) is a

five tuple where
- Q Is a finite set whose elements are called states,

- 2 Is a finite set called the input alphabet,

- §:Q x XU{e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

- s € Q Is the start state,

12

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, 4,5,A) is a

five tuple where
- Q Is a finite set whose elements are called states,

- 2 Is a finite set called the input alphabet,

- §:Q x X U{e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

- s € Q Is the start state,
- A C Qis the set of accepting/final states.

6(g,a) fora € X U {e} Is a subset of Q — a set of states.

12

0,1 071

start @ 1 @ 0 1
A
&

- U= Zio/ %t/‘lu%g
T L= Zo,t’j

- 5= c o b

2o | 143 (a8 iy 2
2 | f2a5 fes B
% ZZ&? i 3 {{Js

1314 $q3% 1153

- A= {q/-.,‘z) 13

Extending the transition function to
strings

Extending the transition function to strings

.- NFAN = (Q, X, 6,5, A)

14

Extending the transition function to strings

- NFAN = (Q, %, 6,5, A)

+ 0(q,a): set of states that N can go to from g on reading
a e ¥ U{e}

14

Extending the transition function to strings

- NFAN = (Q, %, 6,s,A)

+ 0(q,a): set of states that N can go to from g on reading
aeXU{e}l

- Want transition function §* : Q x ¥* — P(Q)

14

Extending the transition function to strings

- NFAN = (Q, %, 6,s,A)

+ 0(q,a): set of states that N can go to from g on reading
aeXU{e}l

- Want transition function §* : Q x ¥* — P(Q)

-+ 0%(g,w): set of states reachable on input w starting in
state q.

14

Extending the transition function to strings

Definition
For NFAN = (Q, %, 4,s,A) and g € Q the ereach(q) Is the set of

all states that g can reach using only e-transitions.

15

Extending the transition function to strings

Definition
For NFAN = (Q, %, 4,s,A) and g € Q the ereach(q) Is the set of

all states that g can reach using only e-transitions.

Definition
For X C Q: ereach(X) = U,y ereach(x).

L

15

Extending the transition function to strings

ereach(q): set of all states that g can reach using only
e-transitions.

Definition N
Inductive definition of §* : Q x ¥* — P(Q):

- 1fw =g, 6*(q,w) = ereach(q)

16

Extending the transition function to strings

ereach(q): set of all states that g can reach using only
e-transitions.

Definition N
Inductive definition of §* : Q x ¥* — P(Q):

- 1fw =g, 6*(q,w) = ereach(q)
- if w=awherea € ¥:

5*(g,a) = ereach (L s a))

p€eereach(q)

16

Extending the transition function to strings

ereach(q): set of all states that g can reach using only
e-transitions.

Definition N
Inductive definition of §* : Q x ¥* — P(Q):

- 1fw =g, 6*(q,w) = ereach(q)
- if w=awherea € ¥:
5*(g,a) = ereach L é(p.a)
p€eereach(q)

- Ifw = ax:

5*(q, w) = ereach U L & (r.x)
peereach(q) \red*(p,a)

16

Transition for strings: w = ax

5*(g, w) = ereach U L) & (r.x)
peereach(q) \ redé*(p,a)

+ R =ereach(q) = W= eAf

5*(q, w) = ereach (U L & (r.x)

PER red*(p,a)

- N = U 0" (p,a): All the states reachable from g with the

pER
letter a.

- 6*(q,w) = ereach <U 5*(r,x)>

renN

17

Formal definition of language accepted by N

Definition .
A string w is accepted by NFA N if §5(s,w) NA = 0.

Definition .
The language L(N) accepted by a NFAN = (Q, X%, d,S,A) IS

{we x| §(s,w)NA#£D}.

18

Formal definition of language accepted by N

Definition .
A string w is accepted by NFA N if §5(s,w) NA = 0.

Definition .
The language L(N) accepted by a NFAN = (Q, X%, d,S,A) IS

{we x| §(s,w)NA#£D}.
important: Formal definition of the language of NFA above

uses 6* and not 4. As such, one does not need to include
e-transitions closure when specifying 4, since ¢* takes care of

that.

18

19

19

19

What is:

19

Why non-determinism?

- Non-determinism adds power to the model; richer
programming language and hence (much) easier to
“design” programs

- Fundamental in theory to prove many theorems

- Very important in practice directly and indirectly

- Many deep connections to various fields in Computer
Science and Mathematics

Many interpretations of non-determinism. Hard to understand
at the outset. Get used to it and then you will appreciate it
slowly.

20

Constructing NFAs

DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.

- NFAs prove ability to “guess and verify” which simplifies
design and reduces number of states

- Easy proofs of some closure properties

21

Example

Strings that represent decimal numbers.
Examples:@3457.‘75332,534677567.1 , =V, D. 123

-0 AL TLTA

Strings that represent valid C comments.

Examples:] >
* Comment 1 *\ O
\\Comment 2
¥
S L * *
(DL (DD — @D

Jseit

23

L3 = {bitstrings that have a 1 three positions from the end}

&)

()
4 1 2
(D (D22

24

A simple transformation

Theorem .
For every NFA N there is another NFA N" such that L(N) = L(N')

and such that N” has the following two properties:

- N" has single final state f that has no outgoing transitions
+ The start state s of N is different fromf ;| - O+ LO

i O"*O\a

)= ¢

O

25

A simple transformation

Theorem .
For every NFA N there is another NFA N" such that L(N) = L(N’)

and such that N” has the following two properties:

- N’ has single final state f that has no outgoing transitions
- The start state s of N is different from f

Why couldn’t we say this for DFA's?

25

A simple transformation

Hint: Consider the L = 01+ 10.

26

Closure Properties of NFAs

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the
following operations?

- union

- Intersection

- concatenation
- Kleene star

- complement

27

Closure under union

Theorem .
For any two NFAs N1 and N, there is a NFA N such that

L(N) = L(N7) U L(N,).

28

Closure under union

Theorem .
For any two NFAs N1 and N, there is a NFA N such that

L(N) = L(N7) U L(N,).

28

Closure under concatenation

Theorem .
For any two NFAs N1 and N, there is a NFA N such that

L(N) = L(Nq)«L(N>).
Wy z Y2

29

Closure under concatenation

Theorem .
For any two NFAs N1 and N, there is a NFA N such that

L(N) = L(N1)+L(N).

4“*&{ N N2 }

29

Closure under Kleene star

Theorem .
For any NFA N1 there is a NFA N such that L(N) = (L(Nq))*.

30

Closure under Kleene star

Theorem .
For any NFA N1 there is a NFA N such that L(N) = (L(Nq))*.

31

Closure under Kleene star

Theorem .
For any NFA N1 there is a NFA N such that L(N) = (L(Nq))*.

Does not work! Why?

31

Closure under Kleene star

Theorem .
For any NFA N4 there is a NFA N such that L(N) = (L(Nq))*.

N\

5 « @

32

NFAs capture Regular Languages

(e+0)(1+10)"

—s |(e+0) —|(1+10)

—><: >—> L(1+10) !

33

VAl

\

Final NFA simplified slightly to reduce states

> - K“@

Last thought

Do all NFAs have a corresponding DFA?

36

Do all NFAs have a corresponding DFA?

Yes but it likely won't be pretty.

0 0
0 0
start Cloy @ do10 @
0 | 1 0
1 1 0
0

doo1 @ ! do11 1 f@m 1 36
/\/

