Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.

CS/ECE-374: Lecture 2 - Regular Languages

Lecturer: Nickvash Kani

Chat moderator: Samir Khan

January 28, 2021

University of Illinois at Urbana Champaign

Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.

Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.

This is an example of a regular language which we'll be discussing today.

Chomsky Hierarchy

Chomsky Hierarchy

Theorem (Kleene's Theorem)

A language is regular if and only if it can be obtained from finite languages by applying the three operations:

- Union
 - Concatenation
 - · Repetition (*)

a finite number of times.

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively.

Base Case

- vis a regular language.
- $\{\epsilon\}$ is a regular language.
- {a} is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.

Inductive step:

We can build up languages using a few basic operations:

- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- If L_1, L_2 are regular then L_1L_2 is regular.
- If L is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular. The \cdot^* operator name is *Kleene star*.
- If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

Regular languages are closed under operations of union, concatenation and Kleene star.

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is regular.

Lemma

Let L_1, L_2, \ldots , be regular languages over alphabet Σ . Then the language $\bigcup_{i=1}^{\infty} L_i$ is not necessarily regular.

Example:

Define
$$L_i = \{0^i | i^3\}$$
 * One string in each $L_i = 0^* | *$

$$L = \{0^i | i^3\} = \{0^i | i^3\} = \{0^i | 0^i\} = \{$$

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Lemma

Every finite language L is regular.

Examples:
$$L = \{a, abaab, aba\}$$
. $L = \{w \mid |w| \le 100\}$. Why?

1.
$$L_1 = \left\{0^i \mid i = 0, 1, \dots, \infty\right\}$$
. The language L_1 is regular. T/F?

- 1. $L_1 = \left\{0^i \mid i = 0, 1, \dots, \infty\right\}$. The language L_1 is regular. T/F?
- 2. $L_2 = \{0^{17i} \mid i = 0, 1, \dots, \infty\}$. The language L_2 is regular. TRUE T/F?

T/F?

$$L_0 = \{0\}$$
 $L_{170} = \{0 L_0 \dots L_0\}$

The real results are set of the real res

- 1. $L_1 = \left\{0^i \mid i = 0, 1, \dots, \infty\right\}$. The language L_1 is regular. T/F?
- 2. $L_2 = \left\{0^{17i} \mid i = 0, 1, \dots, \infty\right\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \{0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5\}$. L_3 is regular. T/F? $L_0 = \{0^i\} \quad L_0 L_0 = \{0^i\} \quad L_0$

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - · compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50's: Stephen Kleene who has a star names after him ¹.

¹Kleene, Stephen C.: "Representation of Events in Nerve Nets and Finite Automata". In Shannon, Claude E.; McCarthy, John. Automata Studies, Princeton University Press. pp. 3–42., 1956.

Inductive Definition

A regular expression \mathbf{r} over an alphabet Σ is one of the following:

Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- $(\mathbf{r_1} + \mathbf{r_2})$ denotes the language $R_1 \cup R_2$
- $(\mathbf{r_1} \cdot \mathbf{r_2}) = r_1 \cdot r_2 = (\mathbf{r_1} \mathbf{r_2})$ denotes the language $R_1 R_2$
- $(r_1)^*$ denotes the language R_1^*

Regular Languages vs Regular Expressions

Regular	Languages
---------	-----------

anguages Regular Expressions

```
\emptyset regular \{\epsilon\} regular \{a\} regular for a \in \Sigma R_1 \cup R_2 regular if both are R_1R_2 regular if both are R^* is regular if R is
```

```
\emptyset denotes \emptyset
\epsilon denotes \{\epsilon\}
\mathbf{a} denote \{a\}
\mathbf{r_1} + \mathbf{r_2} denotes R_1 \cup R_2
\mathbf{r_1} \cdot \mathbf{r_2} denotes R_1R_2
\mathbf{r}^* denote R^*
```

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

For a regular expression r, L(r) is the language denoted by
 r. Multiple regular expressions can denote the same language!

Example: (0+1) and (1+0) denote same language $\{0,1\}$

- For a regular expression r, L(r) is the language denoted by
 r. Multiple regular expressions can denote the same language!
 - **Example:** (0 + 1) and (1 + 0) denote same language $\{0, 1\}$
- Two regular expressions $\mathbf{r_1}$ and $\mathbf{r_2}$ are equivalent if $L(\mathbf{r_1}) = L(\mathbf{r_2})$.

- For a regular expression r, L(r) is the language denoted by
 r. Multiple regular expressions can denote the same language!
 - **Example:** (0 + 1) and (1 + 0) denote same language $\{0, 1\}$
- Two regular expressions $\mathbf{r_1}$ and $\mathbf{r_2}$ are equivalent if $L(\mathbf{r_1}) = L(\mathbf{r_2})$.
- Omit parenthesis by adopting precedence order: *, concatenate, +.

Example: $r^*s + t = ((r^*)s) + t$

- For a regular expression r, L(r) is the language denoted by
 r. Multiple regular expressions can denote the same language!
 - **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions $\mathbf{r_1}$ and $\mathbf{r_2}$ are equivalent if $L(\mathbf{r_1}) = L(\mathbf{r_2})$.
- Omit parenthesis by adopting precedence order: *, concatenate, +.
 - **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations.

Example:
$$rst = (rs)t = r(st)$$
, $r + s + t = r + (s + t) = (r + s) + t$.

For a regular expression r, L(r) is the language denoted by
 r. Multiple regular expressions can denote the same language!

Example: (0+1) and (1+0) denote same language $\{0,1\}$

- Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +.

Example: $r^*s + t = ((r^*)s) + t$

Omit parenthesis by associativity of each of these operations.

Example:
$$rst = (rs)t = r(st)$$
,
 $r + s + t = r + (s + t) = (r + s) + t$.

• Superscript +. For convenience, define $\mathbf{r}^+ = \mathbf{r}\mathbf{r}^*$. Hence if $L(\mathbf{r}) = R$ then $L(\mathbf{r}^+) = R^+$.

15

- For a regular expression r, L(r) is the language denoted by
 r. Multiple regular expressions can denote the same language!
 - **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +.
 - **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations.

Example:
$$rst = (rs)t = r(st)$$
, $r + s + t = r + (s + t) = (r + s) + t$.

• Superscript +. For convenience, define $\mathbf{r}^+ = \mathbf{r}\mathbf{r}^*$. Hence if $L(\mathbf{r}) = R$ then $L(\mathbf{r}^+) = R^+$.

15

Some examples of regular expressions

1.
$$(0+1)^*$$
:) All 6 inary strings
$$\frac{L_0^2}{L_1^2}$$
(LoULi)

1.
$$(0+1)^*$$
: could be 2. $(0+1)^*001(0+1)^*$: ——

All strings with ODI as substring

1. $(0+1)^*$: 2. (0+1)*001(0+1)*: 3. $0^* + (0^*10^*10^*10^*)^*$:

4. $(\epsilon + 1)(01)^*(\epsilon + 0)$:

alternating

1 0101010

1. All strings that end in 1011?

- 1. All strings that end in 1011?
- 2. All strings except 11?

 All string 3 characters or greater $U \{60, 01, 103\}$ $U\{0, 13\} \cup \{63\}$ $E + 0 + 1 + 00 + 01 + 10 + (0 + 1)^3 (0 + 1)^4$

- 1. All strings that end in 1011?
- 2. All strings except 11?

abe is a subsequence of string w if the letters a b o appear in the string in that order tut not necessarily consecutively 3. All strings that do not contain 000 as a subsequence?

Ex= gabtue 1* (E+0) |* (E+0) |*

- 1. All strings that end in 1011?
- 2. All strings except 11?
- 3. All strings that do not contain 000 as a subsequence?
- 4. All strings that do not contain the substring 10?

Tying everything together

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical AND of all the elements of x.

Formulate the regular expression which describes the above language:

L=
$$\{010^{\circ} 111^{\circ} 0010^{\circ} 0010^{\circ} 111^{\circ} 0010^{\circ} 111^{\circ} 0010^{\circ} 111^{\circ} 0010^{\circ} 111^{\circ} 111$$

Regular expressions in programming

One last expression....

Bit strings with odd number of 0s and 1s

Bit strings with odd number of 0s and 1s

The regular expression is

$$(00 + 11)^{*}(01 + 10)$$

$$(00 + 11 + (01 + 10)(00 + 11)^{*}(01 + 10))^{*}$$

Bit strings with odd number of 0s and 1s

The regular expression is

$$(00+11)^*(01+10)$$
$$(00+11+(01+10)(00+11)^*(01+10))^*$$

(Solved using techniques to be presented in the following lectures...)