
Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x)
is a string n-digits long with Σ = {0, 1} and has an output (y)
which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.
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Chomsky Hierarchy
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Chomsky Hierarchy
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Regular Languages



Regular Languages

Theorem (Kleene’s Theorem )

A language is regular if and only if it can be obtained from
finite languages by applying the three operations:

• Union
• Concatenation
• Repetition

a finite number of times.
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Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined
inductively.

Base Case

• ∅ is a regular language.
• {ε} is a regular language.
• {a} is a regular language for each a ∈ Σ. Interpreting a as
string of length 1.
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Regular Languages

Inductive step:

We can build up languages using a few basic operations:

• If L1, L2 are regular then L1 ∪ L2 is regular.
• If L1, L2 are regular then L1L2 is regular.
• If L is regular, then L∗ = ∪n≥0Ln is regular.
The ·∗ operator name is Kleene star.

• If L is regular, then so is L = Σ∗ \ L.

Regular languages are closed under operations of union,
concatenation and Kleene star.
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Regular Languages

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of
such operations is regular.

Lemma
Let L1, L2, . . . , be regular languages over alphabet Σ. Then the
language ∪∞

i=1Li is not necessarily regular.

Example:

8



Some simple regular languages

Lemma
If w is a string then L = {w} is regular.

Example: {aba} or {abbabbab}. Why?

Lemma
Every finite language L is regular.

Examples: L = {a,abaab,aba}. L = {w | |w| ≤ 100}. Why?
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Rapid-fire questions - regular languages

1. L1 =
{
0i

∣∣∣ i = 0, 1, . . . ,∞
}
. The language L1 is regular. T/F?

2. L2 =
{
017i

∣∣∣ i = 0, 1, . . . ,∞
}
. The language L2 is regular.

T/F?
3. L3 =

{
0i

∣∣∣ i is divisible by 2, 3,or 5}. L3 is regular. T/F?
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Rapid-fire questions - regular languages

4. L4 = {w ∈ {0, 1}∗ | w has at most 374 1s}. L4 is regular.
T/F?
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Regular Expressions



Regular Expressions

A way to denote regular languages

• simple patterns to describe related strings
• useful in

• text search (editors, Unix/grep, emacs)
• compilers: lexical analysis
• compact way to represent interesting/useful languages
• dates back to 50’s: Stephen Kleene
who has a star names after him 1.

1Kleene, Stephen C.: ”Representation of Events in Nerve Nets and Finite
Automata”. In Shannon, Claude E.; McCarthy, John. Automata Studies,
Princeton University Press. pp. 3–42., 1956.
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Inductive Definition

A regular expression r over an alphabet Σ is one of the
following:
Base cases:

• ∅ denotes the language ∅
• ε denotes the language {ε}.
• a denote the language {a}.

Inductive cases: If r1 and r2 are regular expressions denoting
languages R1 and R2 respectively then,

• (r1 + r2) denotes the language R1 ∪ R2
• (r1·r2) = r1·r2 = (r1r2) denotes the language R1R2
• (r1)∗ denotes the language R∗1

13



Regular Languages vs Regular Expressions

Regular Languages Regular Expressions

∅ regular ∅ denotes ∅
{ε} regular ε denotes {ε}
{a} regular for a ∈ Σ a denote {a}
R1 ∪ R2 regular if both are r1 + r2 denotes R1 ∪ R2
R1R2 regular if both are r1·r2 denotes R1R2
R∗ is regular if R is r∗ denote R∗

Regular expressions denote regular languages — they explicitly
show the operations that were used to form the language
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Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by
r. Multiple regular expressions can denote the same
language!
Example: (0+ 1) and (1+ 0) denote same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

• Omit parenthesis by adopting precedence order: ∗,
concatenate, +.
Example: r∗s+ t = ((r∗)s) + t

• Omit parenthesis by associativity of each of these
operations.
Example: rst = (rs)t = r(st),
r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

• Other notation: r + s, r ∪ s, r|s all denote union. rs is
sometimes written as r·s.
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Some examples of regular
expressions



Interpreting regular expressions

1. (0+ 1)∗:

2. (0+ 1)∗001(0+ 1)∗:
3. 0∗ + (0∗10∗10∗10∗)∗:
4. (ε+ 1)(01)∗(ε+ 0):
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Creating regular expressions

1. All strings that end in 1011?

2. All strings except 11?
3. All strings that do not contain 000 as a subsequence?
4. All strings that do not contain the substring 10?
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Creating regular expressions
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Tying everything together

Consider the problem of a n-input AND function. The input (x)
is a string n-digits long with Σ = {0, 1} and has an output (y)
which is the logical AND of all the elements of x.

Formulate the regular expression which describes the above
language:
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Regular expressions in programming



One last expression....



Bit strings with odd number of 0s and 1s

The regular expression is(
00+ 11

)∗
(01+ 10)(

00+ 11+(01+ 10)(00+ 11)∗(01+ 10)
)∗

(Solved using techniques to be presented in the following
lectures...)
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