
Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x)
is a string n-digits long with Σ = {0, 1} and has an output (y)
which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.

1

CS/ECE-374: Lecture 2 - Regular Languages

Lecturer: Nickvash Kani
Chat moderator: Samir Khan
January 28, 2021

University of Illinois at Urbana Champaign

Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x)
is a string n-digits long with Σ = {0, 1} and has an output (y)
which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.

This is an example of a regular language which we’ll be
discussing today.

2

Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x)
is a string n-digits long with Σ = {0, 1} and has an output (y)
which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.

This is an example of a regular language which we’ll be
discussing today.

2

Chomsky Hierarchy

3

Chomsky Hierarchy

4

Regular Languages

Regular Languages

Theorem (Kleene’s Theorem)

A language is regular if and only if it can be obtained from
finite languages by applying the three operations:

• Union
• Concatenation
• Repetition

a finite number of times.

5

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined
inductively.

Base Case

• ∅ is a regular language.
• {ε} is a regular language.
• {a} is a regular language for each a ∈ Σ. Interpreting a as
string of length 1.

6

Regular Languages

Inductive step:

We can build up languages using a few basic operations:

• If L1, L2 are regular then L1 ∪ L2 is regular.
• If L1, L2 are regular then L1L2 is regular.
• If L is regular, then L∗ = ∪n≥0Ln is regular.
The ·∗ operator name is Kleene star.

• If L is regular, then so is L = Σ∗ \ L.

Regular languages are closed under operations of union,
concatenation and Kleene star.

7

Regular Languages

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of
such operations is regular.

Lemma
Let L1, L2, . . . , be regular languages over alphabet Σ. Then the
language ∪∞

i=1Li is not necessarily regular.

Example:

8

Some simple regular languages

Lemma
If w is a string then L = {w} is regular.

Example: {aba} or {abbabbab}. Why?

Lemma
Every finite language L is regular.

Examples: L = {a,abaab,aba}. L = {w | |w| ≤ 100}. Why?

9

Some simple regular languages

Lemma
If w is a string then L = {w} is regular.

Example: {aba} or {abbabbab}. Why?

Lemma
Every finite language L is regular.

Examples: L = {a,abaab,aba}. L = {w | |w| ≤ 100}. Why?

9

Rapid-fire questions - regular languages

1. L1 =
{
0i

∣∣∣ i = 0, 1, . . . ,∞
}
. The language L1 is regular. T/F?

2. L2 =
{
017i

∣∣∣ i = 0, 1, . . . ,∞
}
. The language L2 is regular.

T/F?
3. L3 =

{
0i

∣∣∣ i is divisible by 2, 3,or 5}. L3 is regular. T/F?

10

Rapid-fire questions - regular languages

1. L1 =
{
0i

∣∣∣ i = 0, 1, . . . ,∞
}
. The language L1 is regular. T/F?

2. L2 =
{
017i

∣∣∣ i = 0, 1, . . . ,∞
}
. The language L2 is regular.

T/F?

3. L3 =
{
0i

∣∣∣ i is divisible by 2, 3,or 5}. L3 is regular. T/F?

10

Rapid-fire questions - regular languages

1. L1 =
{
0i

∣∣∣ i = 0, 1, . . . ,∞
}
. The language L1 is regular. T/F?

2. L2 =
{
017i

∣∣∣ i = 0, 1, . . . ,∞
}
. The language L2 is regular.

T/F?
3. L3 =

{
0i

∣∣∣ i is divisible by 2, 3,or 5}. L3 is regular. T/F?

10

Rapid-fire questions - regular languages

4. L4 = {w ∈ {0, 1}∗ | w has at most 374 1s}. L4 is regular.
T/F?

11

Regular Expressions

Regular Expressions

A way to denote regular languages

• simple patterns to describe related strings
• useful in

• text search (editors, Unix/grep, emacs)
• compilers: lexical analysis
• compact way to represent interesting/useful languages
• dates back to 50’s: Stephen Kleene
who has a star names after him 1.

1Kleene, Stephen C.: ”Representation of Events in Nerve Nets and Finite
Automata”. In Shannon, Claude E.; McCarthy, John. Automata Studies,
Princeton University Press. pp. 3–42., 1956.

12

Inductive Definition

A regular expression r over an alphabet Σ is one of the
following:
Base cases:

• ∅ denotes the language ∅
• ε denotes the language {ε}.
• a denote the language {a}.

Inductive cases: If r1 and r2 are regular expressions denoting
languages R1 and R2 respectively then,

• (r1 + r2) denotes the language R1 ∪ R2
• (r1·r2) = r1·r2 = (r1r2) denotes the language R1R2
• (r1)∗ denotes the language R∗1

13

Regular Languages vs Regular Expressions

Regular Languages Regular Expressions

∅ regular ∅ denotes ∅
{ε} regular ε denotes {ε}
{a} regular for a ∈ Σ a denote {a}
R1 ∪ R2 regular if both are r1 + r2 denotes R1 ∪ R2
R1R2 regular if both are r1·r2 denotes R1R2
R∗ is regular if R is r∗ denote R∗

Regular expressions denote regular languages — they explicitly
show the operations that were used to form the language

14

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by
r. Multiple regular expressions can denote the same
language!
Example: (0+ 1) and (1+ 0) denote same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

• Omit parenthesis by adopting precedence order: ∗,
concatenate, +.
Example: r∗s+ t = ((r∗)s) + t

• Omit parenthesis by associativity of each of these
operations.
Example: rst = (rs)t = r(st),
r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

• Other notation: r + s, r ∪ s, r|s all denote union. rs is
sometimes written as r·s.

15

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by
r. Multiple regular expressions can denote the same
language!
Example: (0+ 1) and (1+ 0) denote same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

• Omit parenthesis by adopting precedence order: ∗,
concatenate, +.
Example: r∗s+ t = ((r∗)s) + t

• Omit parenthesis by associativity of each of these
operations.
Example: rst = (rs)t = r(st),
r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

• Other notation: r + s, r ∪ s, r|s all denote union. rs is
sometimes written as r·s.

15

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by
r. Multiple regular expressions can denote the same
language!
Example: (0+ 1) and (1+ 0) denote same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

• Omit parenthesis by adopting precedence order: ∗,
concatenate, +.
Example: r∗s+ t = ((r∗)s) + t

• Omit parenthesis by associativity of each of these
operations.
Example: rst = (rs)t = r(st),
r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

• Other notation: r + s, r ∪ s, r|s all denote union. rs is
sometimes written as r·s.

15

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by
r. Multiple regular expressions can denote the same
language!
Example: (0+ 1) and (1+ 0) denote same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

• Omit parenthesis by adopting precedence order: ∗,
concatenate, +.
Example: r∗s+ t = ((r∗)s) + t

• Omit parenthesis by associativity of each of these
operations.
Example: rst = (rs)t = r(st),
r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

• Other notation: r + s, r ∪ s, r|s all denote union. rs is
sometimes written as r·s.

15

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by
r. Multiple regular expressions can denote the same
language!
Example: (0+ 1) and (1+ 0) denote same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

• Omit parenthesis by adopting precedence order: ∗,
concatenate, +.
Example: r∗s+ t = ((r∗)s) + t

• Omit parenthesis by associativity of each of these
operations.
Example: rst = (rs)t = r(st),
r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

• Other notation: r + s, r ∪ s, r|s all denote union. rs is
sometimes written as r·s.

15

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by
r. Multiple regular expressions can denote the same
language!
Example: (0+ 1) and (1+ 0) denote same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

• Omit parenthesis by adopting precedence order: ∗,
concatenate, +.
Example: r∗s+ t = ((r∗)s) + t

• Omit parenthesis by associativity of each of these
operations.
Example: rst = (rs)t = r(st),
r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr∗. Hence if
L(r) = R then L(r+) = R+.

• Other notation: r + s, r ∪ s, r|s all denote union. rs is
sometimes written as r·s.

15

Some examples of regular
expressions

Interpreting regular expressions

1. (0+ 1)∗:

2. (0+ 1)∗001(0+ 1)∗:
3. 0∗ + (0∗10∗10∗10∗)∗:
4. (ε+ 1)(01)∗(ε+ 0):

16

Interpreting regular expressions

1. (0+ 1)∗:
2. (0+ 1)∗001(0+ 1)∗:

3. 0∗ + (0∗10∗10∗10∗)∗:
4. (ε+ 1)(01)∗(ε+ 0):

16

Interpreting regular expressions

1. (0+ 1)∗:
2. (0+ 1)∗001(0+ 1)∗:
3. 0∗ + (0∗10∗10∗10∗)∗:

4. (ε+ 1)(01)∗(ε+ 0):

16

Interpreting regular expressions

1. (0+ 1)∗:
2. (0+ 1)∗001(0+ 1)∗:
3. 0∗ + (0∗10∗10∗10∗)∗:
4. (ε+ 1)(01)∗(ε+ 0):

16

Creating regular expressions

1. All strings that end in 1011?

2. All strings except 11?
3. All strings that do not contain 000 as a subsequence?
4. All strings that do not contain the substring 10?

17

Creating regular expressions

1. All strings that end in 1011?
2. All strings except 11?

3. All strings that do not contain 000 as a subsequence?
4. All strings that do not contain the substring 10?

17

Creating regular expressions

1. All strings that end in 1011?
2. All strings except 11?
3. All strings that do not contain 000 as a subsequence?

4. All strings that do not contain the substring 10?

17

Creating regular expressions

1. All strings that end in 1011?
2. All strings except 11?
3. All strings that do not contain 000 as a subsequence?
4. All strings that do not contain the substring 10?

17

Tying everything together

Consider the problem of a n-input AND function. The input (x)
is a string n-digits long with Σ = {0, 1} and has an output (y)
which is the logical AND of all the elements of x.

Formulate the regular expression which describes the above
language:

18

Regular expressions in programming

One last expression....

Bit strings with odd number of 0s and 1s

The regular expression is(
00+ 11

)∗
(01+ 10)(

00+ 11+(01+ 10)(00+ 11)∗(01+ 10)
)∗

(Solved using techniques to be presented in the following
lectures...)

19

Bit strings with odd number of 0s and 1s

The regular expression is(
00+ 11

)∗
(01+ 10)(

00+ 11+(01+ 10)(00+ 11)∗(01+ 10)
)∗

(Solved using techniques to be presented in the following
lectures...)

19

Bit strings with odd number of 0s and 1s

The regular expression is(
00+ 11

)∗
(01+ 10)(

00+ 11+(01+ 10)(00+ 11)∗(01+ 10)
)∗

(Solved using techniques to be presented in the following
lectures...)

19

	Regular Languages
	Regular Expressions
	Some examples of regular expressions
	Regular expressions in programming
	One last expression....

