
CS/ECE 374: Algorithms & Models of
Computation

More on SAT
Lecture 23
April 29, 2021

Chandra (UIUC) CS/ECE 374 1 Spring 2021 1 / 42

Part I

Circuit SAT

Chandra (UIUC) CS/ECE 374 2 Spring 2021 2 / 42

Circuits

Definition

A circuit is a directed acyclic graph with

1 ? ? 0 ?

∧ ∨ ∨

¬ ∧

∧

Inputs:

Output:

1 Input vertices (without
incoming edges) labelled with
0, 1 or a distinct variable.

2 Every other vertex is labelled
∨, ∧ or ¬.

3 Single node output vertex
with no outgoing edges.

Chandra (UIUC) CS/ECE 374 3 Spring 2021 3 / 42

Circuits

Definition

A circuit is a directed acyclic graph with

1 ? ? 0 ?

∧ ∨ ∨

¬ ∧

∧

Inputs:

Output:

1 Input vertices (without
incoming edges) labelled with
0, 1 or a distinct variable.

2 Every other vertex is labelled
∨, ∧ or ¬.

3 Single node output vertex
with no outgoing edges.

Chandra (UIUC) CS/ECE 374 3 Spring 2021 3 / 42

Circuits

Definition

A circuit is a directed acyclic graph with

1 ? ? 0 ?

∧ ∨ ∨

¬ ∧

∧

Inputs:

Output: 1 Input vertices (without
incoming edges) labelled with
0, 1 or a distinct variable.

2 Every other vertex is labelled
∨, ∧ or ¬.

3 Single node output vertex
with no outgoing edges.

Chandra (UIUC) CS/ECE 374 3 Spring 2021 3 / 42

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables
that causes the output to get value 1?

Claim

CSAT is in NP.

1 Certificate: Assignment to input variables.

2 Certifier: Evaluate the value of each gate in a topological sort of
DAG and check the output gate value.

Chandra (UIUC) CS/ECE 374 4 Spring 2021 4 / 42

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables
that causes the output to get value 1?

Claim

CSAT is in NP.

1 Certificate: Assignment to input variables.

2 Certifier: Evaluate the value of each gate in a topological sort of
DAG and check the output gate value.

Chandra (UIUC) CS/ECE 374 4 Spring 2021 4 / 42

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express
Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

Theorem

SAT ≤P 3SAT ≤P CSAT.

Theorem

CSAT ≤P SAT ≤P 3SAT.

Chandra (UIUC) CS/ECE 374 5 Spring 2021 5 / 42

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express
Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

Theorem

SAT ≤P 3SAT ≤P CSAT.

Theorem

CSAT ≤P SAT ≤P 3SAT.

Chandra (UIUC) CS/ECE 374 5 Spring 2021 5 / 42

Converting a CNF formula into a Circuit

Given 3CNF formulat ϕ with n variables and m clauses, create a
Circuit C .

Inputs to C are the n boolean variables x1, x2, . . . , xn

Use NOT gate to generate literal ¬xi for each variable xi

For each clause (`1 ∨ `2 ∨ `3) use two OR gates to mimic
formula

Combine the outputs for the clauses using AND gates to obtain
the final output

Chandra (UIUC) CS/ECE 374 6 Spring 2021 6 / 42

Example

ϕ =
(
x1 ∨ ∨x3 ∨ x4

)
∧
(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4

)

Chandra (UIUC) CS/ECE 374 7 Spring 2021 7 / 42

Converting a circuit into a CNF formula
Label the nodes

1 ? ? 0 ?

Inputs

Output:

∧

∧

∧

∨ ∨

¬

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

(A) Input circuit (B) Label the nodes.

Chandra (UIUC) CS/ECE 374 8 Spring 2021 8 / 42

Converting a circuit into a CNF formula
Introduce a variable for each node

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

(B) Label the nodes. (C) Introduce var for each node.

Chandra (UIUC) CS/ECE 374 9 Spring 2021 9 / 42

Converting a circuit into a CNF formula
Write a sub-formula for each variable that is true if the var is computed
correctly.

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

xk (Demand a sat’ assignment!)
xk = xi ∧ xj
xj = xg ∧ xh
xi = ¬xf
xh = xd ∨ xe
xg = xb ∨ xc
xf = xa ∧ xb
xd = 0
xa = 1

(C) Introduce var for each node.
(D) Write a sub-formula for
each variable that is true if the
var is computed correctly.

Chandra (UIUC) CS/ECE 374 10 Spring 2021 10 / 42

Converting a circuit into a CNF formula
Convert each sub-formula to an equivalent CNF formula

xk xk

xk = xi ∧ xj (¬xk ∨ xi) ∧ (¬xk ∨ xj) ∧ (xk ∨ ¬xi ∨ ¬xj)
xj = xg ∧ xh (¬xj ∨ xg) ∧ (¬xj ∨ xh) ∧ (xj ∨ ¬xg ∨ ¬xh)

xi = ¬xf (xi ∨ xf) ∧ (¬xi ∨ ¬xf)
xh = xd ∨ xe (xh ∨ ¬xd) ∧ (xh ∨ ¬xe) ∧ (¬xh ∨ xd ∨ xe)
xg = xb ∨ xc (xg ∨ ¬xb) ∧ (xg ∨ ¬xc) ∧ (¬xg ∨ xb ∨ xc)
xf = xa ∧ xb (¬xf ∨ xa) ∧ (¬xf ∨ xb) ∧ (xf ∨ ¬xa ∨ ¬xb)

xd = 0 ¬xd

xa = 1 xa

Chandra (UIUC) CS/ECE 374 11 Spring 2021 11 / 42

Converting a circuit into a CNF formula
Take the conjunction of all the CNF sub-formulas

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

xk ∧ (¬xk ∨ xi) ∧ (¬xk ∨ xj)
∧ (xk ∨¬xi ∨¬xj) ∧ (¬xj ∨ xg)
∧ (¬xj ∨ xh) ∧ (xj ∨¬xg ∨¬xh)
∧ (xi ∨ xf) ∧ (¬xi ∨ ¬xf)
∧ (xh ∨ ¬xd) ∧ (xh ∨ ¬xe)
∧ (¬xh ∨ xd ∨ xe) ∧ (xg ∨ ¬xb)
∧ (xg ∨ ¬xc) ∧ (¬xg ∨ xb ∨ xc)
∧ (¬xf ∨ xa) ∧ (¬xf ∨ xb)
∧ (xf ∨¬xa∨¬xb) ∧ (¬xd)∧ xa

We got a CNF formula that is satisfiable if and only if the original
circuit is satisfiable.

Chandra (UIUC) CS/ECE 374 12 Spring 2021 12 / 42

Reduction: CSAT ≤P SAT

1 For each gate (vertex) v in the circuit, create a variable xv

2 Case ¬: v is labeled ¬ and has one incoming edge from u (so
xv = ¬xu). In SAT formula generate, add clauses (xu ∨ xv),
(¬xu ∨ ¬xv). Observe that

xv = ¬xu is true ⇐⇒ (xu ∨ xv)
(¬xu ∨ ¬xv)

both true.

Chandra (UIUC) CS/ECE 374 13 Spring 2021 13 / 42

Reduction: CSAT ≤P SAT
Continued...

1 Case ∨: So xv = xu ∨ xw . In SAT formula generated, add
clauses (xv ∨ ¬xu), (xv ∨ ¬xw), and (¬xv ∨ xu ∨ xw). Again,
observe that

(
xv = xu ∨ xw

)
is true ⇐⇒

(xv ∨ ¬xu),
(xv ∨ ¬xw),
(¬xv ∨ xu ∨ xw)

all true.

Chandra (UIUC) CS/ECE 374 14 Spring 2021 14 / 42

Reduction: CSAT ≤P SAT
Continued...

1 Case ∧: So xv = xu ∧ xw . In SAT formula generated, add
clauses (¬xv ∨ xu), (¬xv ∨ xw), and (xv ∨¬xu ∨¬xw). Again
observe that

xv = xu ∧ xw is true ⇐⇒
(¬xv ∨ xu),
(¬xv ∨ xw),
(xv ∨ ¬xu ∨ ¬xw)

all true.

Chandra (UIUC) CS/ECE 374 15 Spring 2021 15 / 42

Reduction: CSAT ≤P SAT
Continued...

1 If v is an input gate with a fixed value then we do the following.
If xv = 1 add clause xv . If xv = 0 add clause ¬xv

2 Add the clause xv where v is the variable for the output gate

Chandra (UIUC) CS/ECE 374 16 Spring 2021 16 / 42

Correctness of Reduction

Need to show circuit C is satisfiable iff ϕC is satisfiable

⇒ Consider a satisfying assignment a for C
1 Find values of all gates in C under a
2 Give value of gate v to variable xv ; call this assignment a′
3 a′ satisfies ϕC (exercise)

⇐ Consider a satisfying assignment a for ϕC

1 Let a′ be the restriction of a to only the input variables
2 Value of gate v under a′ is the same as value of xv in a
3 Thus, a′ satisfies C

Chandra (UIUC) CS/ECE 374 17 Spring 2021 17 / 42

Part II

SAT reduces to 3-SAT

Chandra (UIUC) CS/ECE 374 18 Spring 2021 18 / 42

SAT ≤P 3SAT

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(
x ∨ y ∨ z ∨ w ∨ u

)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x
)

In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...

Basic idea
1 Pad short clauses so they have 3 literals.

2 Break long clauses into shorter clauses.

3 Repeat the above till we have a 3CNF.

Chandra (UIUC) CS/ECE 374 19 Spring 2021 19 / 42

SAT ≤P 3SAT

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(
x ∨ y ∨ z ∨ w ∨ u

)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x
)

In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...

Basic idea
1 Pad short clauses so they have 3 literals.

2 Break long clauses into shorter clauses.

3 Repeat the above till we have a 3CNF.

Chandra (UIUC) CS/ECE 374 19 Spring 2021 19 / 42

3SAT ≤P SAT

1 3SAT ≤P SAT.

2 Because...
A 3SAT instance is also an instance of SAT.

Chandra (UIUC) CS/ECE 374 20 Spring 2021 20 / 42

SAT ≤P 3SAT

Claim

SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that

1 ϕ is satisfiable iff ϕ′ is satisfiable.

2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several
clauses of length exactly 3.

Chandra (UIUC) CS/ECE 374 21 Spring 2021 21 / 42

SAT ≤P 3SAT

Claim

SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that

1 ϕ is satisfiable iff ϕ′ is satisfiable.

2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several
clauses of length exactly 3.

Chandra (UIUC) CS/ECE 374 21 Spring 2021 21 / 42

SAT ≤P 3SAT

Claim

SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that

1 ϕ is satisfiable iff ϕ′ is satisfiable.

2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several
clauses of length exactly 3.

Chandra (UIUC) CS/ECE 374 21 Spring 2021 21 / 42

SAT ≤P 3SAT
A clause with two literals

Reduction Ideas: clause with 2 literals
1 Case clause with 2 literals: Let c = `1 ∨ `2. Let u be a new

variable. Consider

c ′ =
(
`1 ∨ `2 ∨ u

)
∧
(
`1 ∨ `2 ∨ ¬u

)
.

2 Suppose ϕ = ψ ∧ c . Then ϕ′ = ψ ∧ c ′ is satisfiable iff ϕ is
satisfiable.

Chandra (UIUC) CS/ECE 374 22 Spring 2021 22 / 42

SAT ≤P 3SAT
A clause with a single literal

Reduction Ideas: clause with 1 literal
1 Case clause with one literal: Let c be a clause with a single

literal (i.e., c = `). Let u, v be new variables. Consider

c ′ =
(
` ∨ u ∨ v

)
∧
(
` ∨ u ∨ ¬v

)
∧
(
` ∨ ¬u ∨ v

)
∧
(
` ∨ ¬u ∨ ¬v

)
.

2 Suppose ϕ = ψ ∧ c . Then ϕ′ = ψ ∧ c ′ is satisfiable iff ϕ is
satisfiable.

Chandra (UIUC) CS/ECE 374 23 Spring 2021 23 / 42

SAT ≤P 3SAT
A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals
1 Case clause with five literals: Let c = `1 ∨ `2 ∨ `3 ∨ `4 ∨ `5.

Let u be a new variable. Consider

c ′ =
(
`1 ∨ `2 ∨ `3 ∨ u

)
∧
(
`4 ∨ `5 ∨ ¬u

)
.

2 Suppose ϕ = ψ ∧ c . Then ϕ′ = ψ ∧ c ′ is satisfiable iff ϕ is
satisfiable.

Chandra (UIUC) CS/ECE 374 24 Spring 2021 24 / 42

SAT ≤P 3SAT
A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals
1 Case clause with k > 3 literals: Let c = `1 ∨ `2 ∨ . . . ∨ `k .

Let u be a new variable. Consider

c ′ =
(
`1 ∨ `2 . . . `k−2 ∨ u

)
∧
(
`k−1 ∨ `k ∨ ¬u

)
.

2 Suppose ϕ = ψ ∧ c . Then ϕ′ = ψ ∧ c ′ is satisfiable iff ϕ is
satisfiable.

Chandra (UIUC) CS/ECE 374 25 Spring 2021 25 / 42

Breaking a clause

Lemma

For any boolean formulas X and Y and z a new boolean variable.
Then

X ∨ Y is satisfiable

if and only if, z can be assigned a value such that(
X ∨ z

)
∧
(
Y ∨ ¬z

)
is satisfiable

(with the same assignment to the variables appearing in X and Y).

Chandra (UIUC) CS/ECE 374 26 Spring 2021 26 / 42

SAT ≤P 3SAT (contd)
Clauses with more than 3 literals

Let c = `1 ∨ · · · ∨ `k . Let u1, . . . uk−3 be new variables. Consider

c ′ =
(
`1 ∨ `2 ∨ u1

)
∧
(
`3 ∨ ¬u1 ∨ u2

)
∧
(
`4 ∨ ¬u2 ∨ u3

)
∧

· · · ∧
(
`k−2 ∨ ¬uk−4 ∨ uk−3

)
∧
(
`k−1 ∨ `k ∨ ¬uk−3

)
.

Claim

ϕ = ψ ∧ c is satisfiable iff ϕ′ = ψ ∧ c ′ is satisfiable.

Another way to see it — reduce size of clause by one:

c ′ =
(
`1 ∨ `2 . . . ∨ `k−2 ∨ uk−3

)
∧
(
`k−1 ∨ `k ∨ ¬uk−3

)
.

Chandra (UIUC) CS/ECE 374 27 Spring 2021 27 / 42

An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧
(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧
(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)

∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)

∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

Chandra (UIUC) CS/ECE 374 28 Spring 2021 28 / 42

An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧
(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧
(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)

∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)

∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

Chandra (UIUC) CS/ECE 374 28 Spring 2021 28 / 42

An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧
(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧
(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)

∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)

∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

Chandra (UIUC) CS/ECE 374 28 Spring 2021 28 / 42

An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧
(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧
(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)

∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)

∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

Chandra (UIUC) CS/ECE 374 28 Spring 2021 28 / 42

Overall Reduction Algorithm
Reduction from SAT to 3SAT

ReduceSATTo3SAT(ϕ):
// ϕ: CNF formula.

for each clause c of ϕ do
if c does not have exactly 3 literals then

construct c ′ as before

else
c ′ = c

ψ is conjunction of all c ′ constructed in loop

return Solver3SAT(ψ)

Correctness (informal)

ϕ is satisfiable iff ψ is satisfiable because for each clause c , the new
3CNF formula c ′ is logically equivalent to c .

Chandra (UIUC) CS/ECE 374 29 Spring 2021 29 / 42

Part III

Reducing Problems to SAT and
Circuit SAT

Chandra (UIUC) CS/ECE 374 30 Spring 2021 30 / 42

Power of SAT and CSAT

SAT and CSAT are meta-problems

Allow us to express/model problem using constraints. In essense they
allow programming with constraints of certain restricted type.

Goal: examples to drive home the point

Chandra (UIUC) CS/ECE 374 31 Spring 2021 31 / 42

Reduce Directed Hamilton Path to SAT

Given directed graph G = (V ,E), does it have a Hamilton path?

Given G obtain CNF formula ϕG such that G has a Hamilton Path
iff ϕG is satisfiable

Alternative view: Program/express using constraints

What are variables?

What are the constraints?

One approach: G has a Hamilton path iff there is a permutation of
the n vertices such that for each i there is an edge from vertex in
position i to vertex in position (i + 1)

How do we express permutations?

Chandra (UIUC) CS/ECE 374 32 Spring 2021 32 / 42

Reduce Directed Hamilton Path to SAT

Given directed graph G = (V ,E), does it have a Hamilton path?

Given G obtain CNF formula ϕG such that G has a Hamilton Path
iff ϕG is satisfiable

Alternative view: Program/express using constraints

What are variables?

What are the constraints?

One approach: G has a Hamilton path iff there is a permutation of
the n vertices such that for each i there is an edge from vertex in
position i to vertex in position (i + 1)

How do we express permutations?

Chandra (UIUC) CS/ECE 374 32 Spring 2021 32 / 42

Reduce Directed Hamilton Path to SAT

Given directed graph G = (V ,E), does it have a Hamilton path?

Given G obtain CNF formula ϕG such that G has a Hamilton Path
iff ϕG is satisfiable

Alternative view: Program/express using constraints

What are variables?

What are the constraints?

One approach: G has a Hamilton path iff there is a permutation of
the n vertices such that for each i there is an edge from vertex in
position i to vertex in position (i + 1)

How do we express permutations?

Chandra (UIUC) CS/ECE 374 32 Spring 2021 32 / 42

Reduction continued

Define variable x(u, i) if vertex u in position i in the permutation.
Total of n2 variables where n = |V |.

Constraints?

For each u, exactly one of x(u, 1), x(u, 2), . . . , x(u, n) should
be true

∨n
i=1 x(u, i) to ensure that x(u, i) is 1 for at least one i

For i 6= j we add constraint ¬x(u, i) ∨ ¬x(u, j) to ensure that
we cannot choose both to be 1 for any pair.
For each u we have a total of (1 + n(n − 1)/2) constraints.
Total of n(1 + n(n − 1)/2) over all vertices.

x(u, i) and x(v , i + 1) implies edge (u, v) in E (G)
(x(u, i) ∧ x(v , i + 1))⇒ z(u, v) where z(u, v) is 1 if
(u, v) ∈ E otherwise 0 (z(u, v) is a constant, not a variable
but to help notation). Convert implication constraint to CNF.

Chandra (UIUC) CS/ECE 374 33 Spring 2021 33 / 42

Reduction continued

Define variable x(u, i) if vertex u in position i in the permutation.
Total of n2 variables where n = |V |.

Constraints?

For each u, exactly one of x(u, 1), x(u, 2), . . . , x(u, n) should
be true∨n

i=1 x(u, i) to ensure that x(u, i) is 1 for at least one i
For i 6= j we add constraint ¬x(u, i) ∨ ¬x(u, j) to ensure that
we cannot choose both to be 1 for any pair.
For each u we have a total of (1 + n(n − 1)/2) constraints.
Total of n(1 + n(n − 1)/2) over all vertices.

x(u, i) and x(v , i + 1) implies edge (u, v) in E (G)

(x(u, i) ∧ x(v , i + 1))⇒ z(u, v) where z(u, v) is 1 if
(u, v) ∈ E otherwise 0 (z(u, v) is a constant, not a variable
but to help notation). Convert implication constraint to CNF.

Chandra (UIUC) CS/ECE 374 33 Spring 2021 33 / 42

Reduction continued

Define variable x(u, i) if vertex u in position i in the permutation.
Total of n2 variables where n = |V |.

Constraints?

For each u, exactly one of x(u, 1), x(u, 2), . . . , x(u, n) should
be true∨n

i=1 x(u, i) to ensure that x(u, i) is 1 for at least one i
For i 6= j we add constraint ¬x(u, i) ∨ ¬x(u, j) to ensure that
we cannot choose both to be 1 for any pair.
For each u we have a total of (1 + n(n − 1)/2) constraints.
Total of n(1 + n(n − 1)/2) over all vertices.

x(u, i) and x(v , i + 1) implies edge (u, v) in E (G)
(x(u, i) ∧ x(v , i + 1))⇒ z(u, v) where z(u, v) is 1 if
(u, v) ∈ E otherwise 0 (z(u, v) is a constant, not a variable
but to help notation). Convert implication constraint to CNF.

Chandra (UIUC) CS/ECE 374 33 Spring 2021 33 / 42

Vertex Cover to CSAT

Given graph G = (V ,E) and integer k , does G have a vertex cover
of size at most k?

Recall S ⊆ V is a vertex cover if each edge (u, v) is covered by S ,
that means u ∈ S or v ∈ S .

How do we reduce to CSAT/SAT? What are the variables?

xu, u ∈ V to indicate whether we choose u

Constraints?

For each edge (u, v) ∈ E a constraint (xu ∨ xv). Total of |E |
constraints.∑

u∈V xu ≤ k . Not a boolean constraint! How?

Chandra (UIUC) CS/ECE 374 34 Spring 2021 34 / 42

Vertex Cover to CSAT

Given graph G = (V ,E) and integer k , does G have a vertex cover
of size at most k?

Recall S ⊆ V is a vertex cover if each edge (u, v) is covered by S ,
that means u ∈ S or v ∈ S .

How do we reduce to CSAT/SAT? What are the variables?
xu, u ∈ V to indicate whether we choose u

Constraints?

For each edge (u, v) ∈ E a constraint (xu ∨ xv). Total of |E |
constraints.∑

u∈V xu ≤ k . Not a boolean constraint! How?

Chandra (UIUC) CS/ECE 374 34 Spring 2021 34 / 42

Vertex Cover to CSAT

Given graph G = (V ,E) and integer k , does G have a vertex cover
of size at most k?

Recall S ⊆ V is a vertex cover if each edge (u, v) is covered by S ,
that means u ∈ S or v ∈ S .

How do we reduce to CSAT/SAT? What are the variables?
xu, u ∈ V to indicate whether we choose u

Constraints?

For each edge (u, v) ∈ E a constraint (xu ∨ xv). Total of |E |
constraints.∑

u∈V xu ≤ k . Not a boolean constraint! How?

Chandra (UIUC) CS/ECE 374 34 Spring 2021 34 / 42

Vertex Cover to CSAT

Given graph G = (V ,E) and integer k , does G have a vertex cover
of size at most k?

Recall S ⊆ V is a vertex cover if each edge (u, v) is covered by S ,
that means u ∈ S or v ∈ S .

How do we reduce to CSAT/SAT? What are the variables?
xu, u ∈ V to indicate whether we choose u

Constraints?

For each edge (u, v) ∈ E a constraint (xu ∨ xv). Total of |E |
constraints.

∑
u∈V xu ≤ k . Not a boolean constraint! How?

Chandra (UIUC) CS/ECE 374 34 Spring 2021 34 / 42

Vertex Cover to CSAT

Given graph G = (V ,E) and integer k , does G have a vertex cover
of size at most k?

Recall S ⊆ V is a vertex cover if each edge (u, v) is covered by S ,
that means u ∈ S or v ∈ S .

How do we reduce to CSAT/SAT? What are the variables?
xu, u ∈ V to indicate whether we choose u

Constraints?

For each edge (u, v) ∈ E a constraint (xu ∨ xv). Total of |E |
constraints.∑

u∈V xu ≤ k . Not a boolean constraint! How?

Chandra (UIUC) CS/ECE 374 34 Spring 2021 34 / 42

Vertex Cover to CSAT

Expressing
∑

u∈V xu ≤ k as a circuit.

Given inputs xu, u ∈ V can create an addition circuit that
outputs the sum

∑
u xu as a dlog ne bit binary number

Given two r -bit binary inputs y1, y2, . . . , yr and z1, z2, . . . , zr
one can develop a boolean circuit to compare which one is
greater

Hence circuit to do
∑

u xu and compare output to input integer
k written in binary

Combine with the constraints to cover edges to obtain a CSAT
instance with input variables xu, u ∈ V

Chandra (UIUC) CS/ECE 374 35 Spring 2021 35 / 42

Vertex Cover to CSAT

Expressing
∑

u∈V xu ≤ k as a circuit.

Given inputs xu, u ∈ V can create an addition circuit that
outputs the sum

∑
u xu as a dlog ne bit binary number

Given two r -bit binary inputs y1, y2, . . . , yr and z1, z2, . . . , zr
one can develop a boolean circuit to compare which one is
greater

Hence circuit to do
∑

u xu and compare output to input integer
k written in binary

Combine with the constraints to cover edges to obtain a CSAT
instance with input variables xu, u ∈ V

Chandra (UIUC) CS/ECE 374 35 Spring 2021 35 / 42

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

How did they prove it? And why SAT or CSAT?

Proof is in retrospect simple.

Fix any non-deterministic TM M and string w
Does M accept w in p(|w |) steps where p() is some fixed
polynomial?

Can express computation of M on w using a polynomial sized
circuit (or CNF formula) due to expressive power of constraints
and local computation of TMs

Thus, can reduce an arbitrary NP problem (since it corresponds
to some non-deterministic poly-time TM M) to SAT

Chandra (UIUC) CS/ECE 374 36 Spring 2021 36 / 42

Mathematical Programming

SAT, CSAT are boolean constraint satisfaction problems.

Other frameworks: constraints involving linear inequalities, convex
functions, polynomials etc

Useful to know: Integer Linear Programming (ILP), Linear
Programming (LP), Mixed Integer Linear Programming (MIP),
Convex Programming

Commercial packages available. ILP, MIP are NP-Hard but many
small to medium problems can be solved in practice. Powerful and
expressive constraint involving numbers, not just booleans.

Chandra (UIUC) CS/ECE 374 37 Spring 2021 37 / 42

Linear Programming

Problem

Real variables x1, x2, . . . , xn. Solve

maximize/minimize
∑n

j=1 cjxj

subject to
∑n

j=1 aijxj ≤ bi for i = 1 . . . p∑n
j=1 aijxj = bi for i = p + 1 . . . q∑n
j=1 aijxj ≥ bi for i = q + 1 . . .m

Input is matrix A = (aij) ∈ Rm×n, column vector b = (bi) ∈ Rm,
and row vector c = (cj) ∈ Rn

Constraints are linear equations and inequalities. Objective is a linear
function

Chandra (UIUC) CS/ECE 374 38 Spring 2021 38 / 42

Integer Linear Programming

Problem

Integer variables x1, x2, . . . , xn. Solve

maximize/minimize
∑n

j=1 cjxj

subject to
∑n

j=1 aijxj ≤ bi for i = 1 . . . p∑n
j=1 aijxj = bi for i = p + 1 . . . q∑n
j=1 aijxj ≥ bi for i = q + 1 . . . n

xi ∈ Z for i = 1 to d

Input is matrix A = (aij) ∈ Rm×n, column vector b = (bi) ∈ Rm,
and row vector c = (cj) ∈ Rn

Constraints are linear equations and inequalities. Objective is a linear
function but variables need to take integer values

Chandra (UIUC) CS/ECE 374 39 Spring 2021 39 / 42

Convex Programming

Problem

Real variables x1, x2, . . . , xn. x ∈ Rn Solve

minimize f (x)
subject to gi (x) ≤ bi for i = 1 . . .m

f , g1, g2, . . . , gm are convex functions

Chandra (UIUC) CS/ECE 374 40 Spring 2021 40 / 42

Mathematical Programming

LP is a specical case of Convex Programming

LP can be solved in polynomial time

Convex programs can be solved arbitrarily well in polynomial
time (exact solution is tricky because of irrational solutions)

ILP and MIP are NP-Hard (decision versions are NP-Complete).

Why is convex programming solvable?

For convex programs, local optimum is a global optimum!

Local optimum can be found by local search! Gradient descent!
Even for non-convex programs

Gradient descent doesn’t give a poly-time algorithm (gives a
pseudo-polytime algorithm) but shows why efficiency is possible.

Chandra (UIUC) CS/ECE 374 41 Spring 2021 41 / 42

Mathematical Programming

LP is a specical case of Convex Programming

LP can be solved in polynomial time

Convex programs can be solved arbitrarily well in polynomial
time (exact solution is tricky because of irrational solutions)

ILP and MIP are NP-Hard (decision versions are NP-Complete).

Why is convex programming solvable?

For convex programs, local optimum is a global optimum!

Local optimum can be found by local search! Gradient descent!
Even for non-convex programs

Gradient descent doesn’t give a poly-time algorithm (gives a
pseudo-polytime algorithm) but shows why efficiency is possible.

Chandra (UIUC) CS/ECE 374 41 Spring 2021 41 / 42

Interplay of Discrete and Continuous
Optimization

Both are fundamental and important and interplay has lot of impact!

Machine learning: (deep) learning uses continuous optimization
to train neural networks for classification and other discrete tasks

Combinatorial optimization: use LP/SDP and other convex
programming methods to solve combinatorial problems

Scientific and numerical computing

Statistics

. . .

Chandra (UIUC) CS/ECE 374 42 Spring 2021 42 / 42

	Circuit SAT
	SAT reduces to 3-SAT
	Reducing Problems to SAT and Circuit SAT

