
CS/ECE 374: Algorithms & Models of
Computation

Undecidability and
Reductions
Lecture 20
April 20, 2021

Chandra (UIUC) CS/ECE 374 1 Spring 2021 1 / 35



Part I

TM Recap and
Recursive/Decidable Languages

Chandra (UIUC) CS/ECE 374 2 Spring 2021 2 / 35



Turing Machine

DFA with infinite tap
One move: read, write, move one cell, change state

On a given input string w a TM M does one of the following:
halt and accept w
halt and reject w
go into an infinite loop (not halt)
crash in which case we think of it as rejecting w

Chandra (UIUC) CS/ECE 374 3 Spring 2021 3 / 35



Turing Machine

DFA with infinite tap
One move: read, write, move one cell, change state

On a given input string w a TM M does one of the following:
halt and accept w
halt and reject w
go into an infinite loop (not halt)
crash in which case we think of it as rejecting w
Chandra (UIUC) CS/ECE 374 3 Spring 2021 3 / 35



Recursive and Recursively Enumerable

Definition

Given TM M , L(M) = {w ∈ Σ∗ | M accepts w}.
We say M accepts L.

Caveat: A language L can be accepted by many different TMs.

Definition

M is an algorithm if it halts on every input and accepts/rejects.

Definition

A language L is decidable (or recursive) if there is an algorithm M
such that L = L(M).

Definition

A language L is recursively enumerable if there is a TM M such
that L = L(M).

Chandra (UIUC) CS/ECE 374 4 Spring 2021 4 / 35



Recursive and Recursively Enumerable

Definition

Given TM M , L(M) = {w ∈ Σ∗ | M accepts w}.
We say M accepts L.

Caveat: A language L can be accepted by many different TMs.

Definition

M is an algorithm if it halts on every input and accepts/rejects.

Definition

A language L is decidable (or recursive) if there is an algorithm M
such that L = L(M).

Definition

A language L is recursively enumerable if there is a TM M such
that L = L(M).

Chandra (UIUC) CS/ECE 374 4 Spring 2021 4 / 35



Recursive and Recursively Enumerable

Definition

Given TM M , L(M) = {w ∈ Σ∗ | M accepts w}.
We say M accepts L.

Caveat: A language L can be accepted by many different TMs.

Definition

M is an algorithm if it halts on every input and accepts/rejects.

Definition

A language L is decidable (or recursive) if there is an algorithm M
such that L = L(M).

Definition

A language L is recursively enumerable if there is a TM M such
that L = L(M).

Chandra (UIUC) CS/ECE 374 4 Spring 2021 4 / 35



Recursive and Recursively Enumerable

Definition

Given TM M , L(M) = {w ∈ Σ∗ | M accepts w}.
We say M accepts L.

Caveat: A language L can be accepted by many different TMs.

Definition

M is an algorithm if it halts on every input and accepts/rejects.

Definition

A language L is decidable (or recursive) if there is an algorithm M
such that L = L(M).

Definition

A language L is recursively enumerable if there is a TM M such
that L = L(M).

Chandra (UIUC) CS/ECE 374 4 Spring 2021 4 / 35



Recursive and Recursively Enumerable

If L is recursive then L̄ = Σ∗ − L is also recursive

If L is recursive then L is a r.e.

Suppose L is r.e. L = L(M) for some M .
If w ∈ L then M halts and accepts w .
If w 6∈ L then M may or may not halt! If M halts then it
rejects w .

Question: Are r.e languages interesting? And why?

Technical/mathematical reasons

Pragmatic reasons. We are used to programs that are correct,
but are willing to give up on efficiency/halting.

Definition

L is undecidable if there is no algorithm M such that L = L(M). L
is not r.e if there is no TM M such that L = L(M).

Chandra (UIUC) CS/ECE 374 5 Spring 2021 5 / 35



Recursive and Recursively Enumerable

If L is recursive then L̄ = Σ∗ − L is also recursive

If L is recursive then L is a r.e.
Suppose L is r.e. L = L(M) for some M .

If w ∈ L then M halts and accepts w .

If w 6∈ L then M may or may not halt! If M halts then it
rejects w .

Question: Are r.e languages interesting? And why?

Technical/mathematical reasons

Pragmatic reasons. We are used to programs that are correct,
but are willing to give up on efficiency/halting.

Definition

L is undecidable if there is no algorithm M such that L = L(M). L
is not r.e if there is no TM M such that L = L(M).

Chandra (UIUC) CS/ECE 374 5 Spring 2021 5 / 35



Recursive and Recursively Enumerable

If L is recursive then L̄ = Σ∗ − L is also recursive

If L is recursive then L is a r.e.
Suppose L is r.e. L = L(M) for some M .

If w ∈ L then M halts and accepts w .
If w 6∈ L then

M may or may not halt! If M halts then it
rejects w .

Question: Are r.e languages interesting? And why?

Technical/mathematical reasons

Pragmatic reasons. We are used to programs that are correct,
but are willing to give up on efficiency/halting.

Definition

L is undecidable if there is no algorithm M such that L = L(M). L
is not r.e if there is no TM M such that L = L(M).

Chandra (UIUC) CS/ECE 374 5 Spring 2021 5 / 35



Recursive and Recursively Enumerable

If L is recursive then L̄ = Σ∗ − L is also recursive

If L is recursive then L is a r.e.
Suppose L is r.e. L = L(M) for some M .

If w ∈ L then M halts and accepts w .
If w 6∈ L then M may or may not halt! If M halts then it
rejects w .

Question: Are r.e languages interesting? And why?

Technical/mathematical reasons

Pragmatic reasons. We are used to programs that are correct,
but are willing to give up on efficiency/halting.

Definition

L is undecidable if there is no algorithm M such that L = L(M). L
is not r.e if there is no TM M such that L = L(M).

Chandra (UIUC) CS/ECE 374 5 Spring 2021 5 / 35



Recursive and Recursively Enumerable

If L is recursive then L̄ = Σ∗ − L is also recursive

If L is recursive then L is a r.e.
Suppose L is r.e. L = L(M) for some M .

If w ∈ L then M halts and accepts w .
If w 6∈ L then M may or may not halt! If M halts then it
rejects w .

Question: Are r.e languages interesting? And why?

Technical/mathematical reasons

Pragmatic reasons. We are used to programs that are correct,
but are willing to give up on efficiency/halting.

Definition

L is undecidable if there is no algorithm M such that L = L(M). L
is not r.e if there is no TM M such that L = L(M).

Chandra (UIUC) CS/ECE 374 5 Spring 2021 5 / 35



Recursive and Recursively Enumerable

If L is recursive then L̄ = Σ∗ − L is also recursive

If L is recursive then L is a r.e.
Suppose L is r.e. L = L(M) for some M .

If w ∈ L then M halts and accepts w .
If w 6∈ L then M may or may not halt! If M halts then it
rejects w .

Question: Are r.e languages interesting? And why?

Technical/mathematical reasons

Pragmatic reasons. We are used to programs that are correct,
but are willing to give up on efficiency/halting.

Definition

L is undecidable if there is no algorithm M such that L = L(M). L
is not r.e if there is no TM M such that L = L(M).

Chandra (UIUC) CS/ECE 374 5 Spring 2021 5 / 35



Universal TM

A single TM that can simulate other TMs. Basis of modern
computers. Single computer that runs many different programs.

UTM takes as input 〈M〉 (encoding of a TM M) and a string
w . Typically written as 〈M,w〉.

UTM simulates M on w .

If M accepts w then UTM accepts its input 〈M,w〉.
If M halts and rejects w then UTM rejects its input 〈M,w〉.
If M does not halt on w then UTM also does not halt on input
〈M,w〉 and hence does not accept its input.

What is the language of UTM? Special name called Universal
Language denote by Lu .

Lu = {〈M,w〉 | M accepts w .}.

Chandra (UIUC) CS/ECE 374 6 Spring 2021 6 / 35



Universal TM

A single TM that can simulate other TMs. Basis of modern
computers. Single computer that runs many different programs.

UTM takes as input 〈M〉 (encoding of a TM M) and a string
w . Typically written as 〈M,w〉.
UTM simulates M on w .

If M accepts w then UTM accepts its input 〈M,w〉.
If M halts and rejects w then UTM rejects its input 〈M,w〉.
If M does not halt on w then UTM also does not halt on input
〈M,w〉 and hence does not accept its input.

What is the language of UTM? Special name called Universal
Language denote by Lu .

Lu = {〈M,w〉 | M accepts w .}.

Chandra (UIUC) CS/ECE 374 6 Spring 2021 6 / 35



Universal TM

A single TM that can simulate other TMs. Basis of modern
computers. Single computer that runs many different programs.

UTM takes as input 〈M〉 (encoding of a TM M) and a string
w . Typically written as 〈M,w〉.
UTM simulates M on w .

If M accepts w then UTM accepts its input 〈M,w〉.
If M halts and rejects w then UTM rejects its input 〈M,w〉.
If M does not halt on w then UTM also does not halt on input
〈M,w〉 and hence does not accept its input.

What is the language of UTM? Special name called Universal
Language denote by Lu .

Lu = {〈M,w〉 | M accepts w .}.

Chandra (UIUC) CS/ECE 374 6 Spring 2021 6 / 35



Encoding TMs

Observation

There is a fixed encoding such that every TM M can be represented
as a unique binary string.

Equivalently we think of a TM as simply a program which is a string.

For each string that is not a valid encoding we associate a dummy
TM that does not accept any string. Why?

One-to-one correspondence between binary strings and TMs.

Mi is the the TM associate with integer i

Chandra (UIUC) CS/ECE 374 7 Spring 2021 7 / 35



Encoding TMs

Observation

There is a fixed encoding such that every TM M can be represented
as a unique binary string.

Equivalently we think of a TM as simply a program which is a string.

For each string that is not a valid encoding we associate a dummy
TM that does not accept any string. Why?

One-to-one correspondence between binary strings and TMs.

Mi is the the TM associate with integer i

Chandra (UIUC) CS/ECE 374 7 Spring 2021 7 / 35



How many TMs?

One-to-one correspondence between integers and TMs.

Proposition

The number of TMs is countably infinite.

Easy but important corollaries:

Hence, countably infinite number of r.e (hence also recursive)
languages

Number of languages is uncountably infinite! Hence there must
be languages that are not r.e/recursive and hence undecidable!
In fact, most langauges are undecidable!

Question: Which interesting languages are undecidable/not r.e?

Chandra (UIUC) CS/ECE 374 8 Spring 2021 8 / 35



How many TMs?

One-to-one correspondence between integers and TMs.

Proposition

The number of TMs is countably infinite.

Easy but important corollaries:

Hence, countably infinite number of r.e (hence also recursive)
languages

Number of languages is uncountably infinite! Hence there must
be languages that are not r.e/recursive and hence undecidable!
In fact, most langauges are undecidable!

Question: Which interesting languages are undecidable/not r.e?

Chandra (UIUC) CS/ECE 374 8 Spring 2021 8 / 35



How many TMs?

One-to-one correspondence between integers and TMs.

Proposition

The number of TMs is countably infinite.

Easy but important corollaries:

Hence, countably infinite number of r.e (hence also recursive)
languages

Number of languages is uncountably infinite! Hence there must
be languages that are not r.e/recursive and hence undecidable!
In fact, most langauges are undecidable!

Question: Which interesting languages are undecidable/not r.e?

Chandra (UIUC) CS/ECE 374 8 Spring 2021 8 / 35



Part II

Undecidable Languages and
Proofs via Reductions

Chandra (UIUC) CS/ECE 374 9 Spring 2021 9 / 35



Undecidable Languages

Counting argument shows that too many languages and too few
TMs/programs hence most languages are not decidable.

What “real-world” and “natural” languages are undecidable?

Short answer: reasoning about general programs is difficult.

Theorem (Turing)

Following languages are undecidable.

LHALT = {〈M〉 | M halts on blank input}
LHALT ,w = {〈M,w〉 | M halts on input w}
Lu = {〈M,w〉 | M accepts w}

Recall that languages are problems. Jeff’s notes calls Halting problem
HALT (the second version)

Chandra (UIUC) CS/ECE 374 10 Spring 2021 10 / 35



Undecidable Languages

Counting argument shows that too many languages and too few
TMs/programs hence most languages are not decidable.

What “real-world” and “natural” languages are undecidable?

Short answer: reasoning about general programs is difficult.

Theorem (Turing)

Following languages are undecidable.

LHALT = {〈M〉 | M halts on blank input}
LHALT ,w = {〈M,w〉 | M halts on input w}
Lu = {〈M,w〉 | M accepts w}

Recall that languages are problems. Jeff’s notes calls Halting problem
HALT (the second version)

Chandra (UIUC) CS/ECE 374 10 Spring 2021 10 / 35



What else is undecidable?

Via (sometimes highly non-trivial) reductions one can show

Essentially many questions about sufficiently general programs
are undecidable

Many problems in mathematical logic are undecidable

Posts correspondence problem which is a string problem

Tiling problems

Problems in mathematics such as Diophantine equation solution
(Hilbert’s 10th problem)

Undecidablity connects computation to mathematics/logic and proofs

Chandra (UIUC) CS/ECE 374 11 Spring 2021 11 / 35



What do we want you to know?

The core undecidable problems (HALT and Lu)

Ability to do simple reductions that prove undecidability of
program behaviour

Chandra (UIUC) CS/ECE 374 12 Spring 2021 12 / 35



Reductions

1 R: Reduction X → Y
2 AY : algorithm for Y :

3 =⇒ New algorithm for X :

AY

IY
YES

NO

IX
R

AX

We write X ≤ Y if X reduces to Y

Lemma

If X ≤ Y and X is undecidable then Y is undecidable.

Chandra (UIUC) CS/ECE 374 13 Spring 2021 13 / 35



CS 125 assignment

Write a program that prints “Hello World”

main() {
print(‘‘Hello World’’)

}

Question: Can we create an autograder? No! Why?

main() {
stealthcode()

print(‘‘Hello World’’)

}
stealthcode() {

do this

do that

viola

}

Chandra (UIUC) CS/ECE 374 14 Spring 2021 14 / 35



CS 125 assignment

Write a program that prints “Hello World”

main() {
print(‘‘Hello World’’)

}

Question: Can we create an autograder?

No! Why?

main() {
stealthcode()

print(‘‘Hello World’’)

}
stealthcode() {

do this

do that

viola

}

Chandra (UIUC) CS/ECE 374 14 Spring 2021 14 / 35



CS 125 assignment

Write a program that prints “Hello World”

main() {
print(‘‘Hello World’’)

}

Question: Can we create an autograder? No! Why?

main() {
stealthcode()

print(‘‘Hello World’’)

}
stealthcode() {

do this

do that

viola

}
Chandra (UIUC) CS/ECE 374 14 Spring 2021 14 / 35



Reducing Halting to Autograder

Halting problem: given arbitrary program foo(), does it halt?

Reduction to CS125Autograder: given foo() output foobar()

main() {
foo()

print(‘‘Hello World’’)

}
foo() {

line 1

line 2

...

}

Note: Reduction only needs to add a few lines of code to foo()

foobar() prints “Hello World” if and only if foo() halts!

If we had CS125Autograder then we can solve Halting. But
Halting is hard according to Turing. Hence ...

Chandra (UIUC) CS/ECE 374 15 Spring 2021 15 / 35



Reducing Halting to Autograder

Halting problem: given arbitrary program foo(), does it halt?

Reduction to CS125Autograder: given foo() output foobar()

main() {
foo()

print(‘‘Hello World’’)

}
foo() {

line 1

line 2

...

}

Note: Reduction only needs to add a few lines of code to foo()

foobar() prints “Hello World” if and only if foo() halts!

If we had CS125Autograder then we can solve Halting. But
Halting is hard according to Turing. Hence ...

Chandra (UIUC) CS/ECE 374 15 Spring 2021 15 / 35



Reducing Halting to Autograder

Halting problem: given arbitrary program foo(), does it halt?

Reduction to CS125Autograder: given foo() output foobar()

main() {
foo()

print(‘‘Hello World’’)

}
foo() {

line 1

line 2

...

}

Note: Reduction only needs to add a few lines of code to foo()

foobar() prints “Hello World” if and only if foo() halts!

If we had CS125Autograder then we can solve Halting. But
Halting is hard according to Turing. Hence ...

Chandra (UIUC) CS/ECE 374 15 Spring 2021 15 / 35



Reducing Halting to Autograder

foo() foobar()REDUCTION

AUTOGRADERfoo()
foobar()

REDUCTION
YES

NO

HALT Decider

Chandra (UIUC) CS/ECE 374 16 Spring 2021 16 / 35



Connection to proofs

Goldbach’s conjecture: Every even integer ≥ 4 can be written as
sum of two primes. Made in 1742, still open.

If Halting can be solved then can solve Goldbach’s conjecture. How?
Can write a program that halts if and only if conjecture is false.

golbach() {
n = 4
repeat

flag = FALSE

for (int i = 2, i < n; i + +) do

If (i and (n − i ) are both prime)

flag = TRUE; Break

If (!flag) return ‘‘Goldbach’s Conjecture is False’’

n = n + 2
Until (TRUE)

}

Chandra (UIUC) CS/ECE 374 17 Spring 2021 17 / 35



Connection to proofs

Goldbach’s conjecture: Every even integer ≥ 4 can be written as
sum of two primes. Made in 1742, still open.

If Halting can be solved then can solve Goldbach’s conjecture. How?
Can write a program that halts if and only if conjecture is false.

golbach() {
n = 4
repeat

flag = FALSE

for (int i = 2, i < n; i + +) do

If (i and (n − i ) are both prime)

flag = TRUE; Break

If (!flag) return ‘‘Goldbach’s Conjecture is False’’

n = n + 2
Until (TRUE)

}

Chandra (UIUC) CS/ECE 374 17 Spring 2021 17 / 35



More reduction about languages

We will show following languages about program behaviour are
undecidable.

L374 = {〈M〉 | L(M) = {0374}}
L 6=∅ = {〈M〉 | L(M) 6= ∅}
a template to show that essentially checking whether a given
program’s language satisfies some non-trivial property is
undecidable

Same proof technique as the one for autograder

Chandra (UIUC) CS/ECE 374 18 Spring 2021 18 / 35



Undecidability of L374

Understanding: What is the problem of deciding L374?

Given an arbitrary program boo(str w) does boo() accept only the
string 0374 and nothing else?

Seems harder than autograder for printing “Hello World”!

Prove that if we had a decider DecideL374 for L374 then we can
create a decider for HALT.

Recall: Decider for HALT takes an arbitrary program foo() and
needs to check if foo() halts.
Reduction should transform foo() into a program fooboo() such
that answer to fooboo() from DecideL374 will let us know if foo()
halts.

Chandra (UIUC) CS/ECE 374 19 Spring 2021 19 / 35



Undecidability of L374

Understanding: What is the problem of deciding L374?

Given an arbitrary program boo(str w) does boo() accept only the
string 0374 and nothing else?

Seems harder than autograder for printing “Hello World”!

Prove that if we had a decider DecideL374 for L374 then we can
create a decider for HALT.

Recall: Decider for HALT takes an arbitrary program foo() and
needs to check if foo() halts.
Reduction should transform foo() into a program fooboo() such
that answer to fooboo() from DecideL374 will let us know if foo()
halts.

Chandra (UIUC) CS/ECE 374 19 Spring 2021 19 / 35



Undecidability of L374

Understanding: What is the problem of deciding L374?

Given an arbitrary program boo(str w) does boo() accept only the
string 0374 and nothing else?

Seems harder than autograder for printing “Hello World”!

Prove that if we had a decider DecideL374 for L374 then we can
create a decider for HALT.

Recall: Decider for HALT takes an arbitrary program foo() and
needs to check if foo() halts.
Reduction should transform foo() into a program fooboo() such
that answer to fooboo() from DecideL374 will let us know if foo()
halts.

Chandra (UIUC) CS/ECE 374 19 Spring 2021 19 / 35



Undecidability of L374

Understanding: What is the problem of deciding L374?

Given an arbitrary program boo(str w) does boo() accept only the
string 0374 and nothing else?

Seems harder than autograder for printing “Hello World”!

Prove that if we had a decider DecideL374 for L374 then we can
create a decider for HALT.

Recall: Decider for HALT takes an arbitrary program foo() and
needs to check if foo() halts.

Reduction should transform foo() into a program fooboo() such
that answer to fooboo() from DecideL374 will let us know if foo()
halts.

Chandra (UIUC) CS/ECE 374 19 Spring 2021 19 / 35



Undecidability of L374

Understanding: What is the problem of deciding L374?

Given an arbitrary program boo(str w) does boo() accept only the
string 0374 and nothing else?

Seems harder than autograder for printing “Hello World”!

Prove that if we had a decider DecideL374 for L374 then we can
create a decider for HALT.

Recall: Decider for HALT takes an arbitrary program foo() and
needs to check if foo() halts.
Reduction should transform foo() into a program fooboo() such
that answer to fooboo() from DecideL374 will let us know if foo()
halts.

Chandra (UIUC) CS/ECE 374 19 Spring 2021 19 / 35



Undecidability of L374

A simple program simpleboo(str w)

simpeboo(str w) {
if (w = 0374) then return YES

return NO

}

Easy to see that L(simpleboo()) = {0374}.

Given arbitrary program foo() reduction creates fooboo(str w):

fooboo(str w) {
foo()

if (w = 0374) then Return YES

return NO

}
foo () {
code of foo ...

}

Chandra (UIUC) CS/ECE 374 20 Spring 2021 20 / 35



Undecidability of L374

A simple program simpleboo(str w)

simpeboo(str w) {
if (w = 0374) then return YES

return NO

}

Easy to see that L(simpleboo()) = {0374}.

Given arbitrary program foo() reduction creates fooboo(str w):

fooboo(str w) {
foo()

if (w = 0374) then Return YES

return NO

}
foo () {
code of foo ...

}
Chandra (UIUC) CS/ECE 374 20 Spring 2021 20 / 35



Undecidability of L374

Lemma

Language of fooboo() is {0374} if foo() halts. Language of
fooboo() is ∅ if foo() does not halt.

Corollary

fooboo() in L374 if and only if foo() ∈ LHALT .

Corollary

If L374 is decidable then LHALT is decidable. Since LHALT is
undecidable L374 is undecidable.

Chandra (UIUC) CS/ECE 374 21 Spring 2021 21 / 35



Undecidability of L374

Lemma

Language of fooboo() is {0374} if foo() halts. Language of
fooboo() is ∅ if foo() does not halt.

Corollary

fooboo() in L374 if and only if foo() ∈ LHALT .

Corollary

If L374 is decidable then LHALT is decidable. Since LHALT is
undecidable L374 is undecidable.

Chandra (UIUC) CS/ECE 374 21 Spring 2021 21 / 35



Undecidability of L 6=∅

Understanding: What is the problem of deciding L 6=∅?

Given an arbitrary program boo(str w) does boo() accept any
string?

Reduce from HALT: given arbitrary program foo() create fooboo()
such that fooboo() accepts some string iff foo() halts.

Chandra (UIUC) CS/ECE 374 22 Spring 2021 22 / 35



Undecidability of L 6=∅

Understanding: What is the problem of deciding L 6=∅?

Given an arbitrary program boo(str w) does boo() accept any
string?

Reduce from HALT: given arbitrary program foo() create fooboo()
such that fooboo() accepts some string iff foo() halts.

Chandra (UIUC) CS/ECE 374 22 Spring 2021 22 / 35



Undecidability of L 6=∅

A simple program simpleboo(str w)

simpeboo(str w) {
return YES

}

Easy to see that L(simpleboo()) = Σ∗ and hence not empty.

Given arbitrary program foo() reduction creates fooboo(str w) as
follows

fooboo(str w) {
foo()

return YES

}
foo () {
code of foo ...

}

Chandra (UIUC) CS/ECE 374 23 Spring 2021 23 / 35



Undecidability of L 6=∅

A simple program simpleboo(str w)

simpeboo(str w) {
return YES

}

Easy to see that L(simpleboo()) = Σ∗ and hence not empty.

Given arbitrary program foo() reduction creates fooboo(str w) as
follows

fooboo(str w) {
foo()

return YES

}
foo () {
code of foo ...

}

Chandra (UIUC) CS/ECE 374 23 Spring 2021 23 / 35



Undecidability of L 6=∅

Lemma

Language of fooboo() is Σ∗ if foo() halts. Language of fooboo()
is ∅ if foo() does not halt.

Corollary

fooboo() in L 6=∅ if and only if foo() ∈ LHALT .

Chandra (UIUC) CS/ECE 374 24 Spring 2021 24 / 35



Undecidability of L 6=∅

Lemma

Language of fooboo() is Σ∗ if foo() halts. Language of fooboo()
is ∅ if foo() does not halt.

Corollary

fooboo() in L 6=∅ if and only if foo() ∈ LHALT .

Chandra (UIUC) CS/ECE 374 24 Spring 2021 24 / 35



Beyond r.e

Lemma

If L is recursive then L̄ = Σ∗ − L is recursive.

Lemma

Suppose L and L̄ are both r.e. Then L is recursive.

Proof.

We have TMs M,M ′ such that L = L(M) and L̄ = L(M ′).
Construct new TM M∗ that on input w simulates both M and M ′

on w in parallel. One of them has to halt and give right answer.

Corollary

Suppose L is r.e but not recursive. Then L̄ is not r.e.

Chandra (UIUC) CS/ECE 374 25 Spring 2021 25 / 35



Beyond r.e

Lemma

If L is recursive then L̄ = Σ∗ − L is recursive.

Lemma

Suppose L and L̄ are both r.e. Then L is recursive.

Proof.

We have TMs M,M ′ such that L = L(M) and L̄ = L(M ′).
Construct new TM M∗ that on input w simulates both M and M ′

on w in parallel. One of them has to halt and give right answer.

Corollary

Suppose L is r.e but not recursive. Then L̄ is not r.e.

Chandra (UIUC) CS/ECE 374 25 Spring 2021 25 / 35



Beyond r.e

Lemma

If L is recursive then L̄ = Σ∗ − L is recursive.

Lemma

Suppose L and L̄ are both r.e. Then L is recursive.

Proof.

We have TMs M,M ′ such that L = L(M) and L̄ = L(M ′).
Construct new TM M∗ that on input w simulates both M and M ′

on w in parallel. One of them has to halt and give right answer.

Corollary

Suppose L is r.e but not recursive. Then L̄ is not r.e.

Chandra (UIUC) CS/ECE 374 25 Spring 2021 25 / 35



Beyond r.e

Lemma

If L is recursive then L̄ = Σ∗ − L is recursive.

Lemma

Suppose L and L̄ are both r.e. Then L is recursive.

Proof.

We have TMs M,M ′ such that L = L(M) and L̄ = L(M ′).
Construct new TM M∗ that on input w simulates both M and M ′

on w in parallel. One of them has to halt and give right answer.

Corollary

Suppose L is r.e but not recursive. Then L̄ is not r.e.

Chandra (UIUC) CS/ECE 374 25 Spring 2021 25 / 35



Beyond r.e

Corollary

Suppose L is r.e but not recursive. Then L̄ is not r.e.

Thus LHALT and Lu are not even r.e. What does this mean?

What problem is LHALT ? Given code/program 〈M〉 > does it not
halt on blank input? How can we tell?

We can simulate M using a UTM. How long? If M halts during
simulation, UTM can reject 〈M〉. But if it does not halt after a
billion steps can we stop simulation and say for sure that M will not
halt? Perhaps there are other ways of figuring this out? Proof says
no.

Chandra (UIUC) CS/ECE 374 26 Spring 2021 26 / 35



Beyond r.e

Corollary

Suppose L is r.e but not recursive. Then L̄ is not r.e.

Thus LHALT and Lu are not even r.e. What does this mean?

What problem is LHALT ? Given code/program 〈M〉 > does it not
halt on blank input? How can we tell?

We can simulate M using a UTM. How long? If M halts during
simulation, UTM can reject 〈M〉. But if it does not halt after a
billion steps can we stop simulation and say for sure that M will not
halt? Perhaps there are other ways of figuring this out? Proof says
no.

Chandra (UIUC) CS/ECE 374 26 Spring 2021 26 / 35



Part III

Undecidablity of Halting

Chandra (UIUC) CS/ECE 374 27 Spring 2021 27 / 35



Turing’s Theorem

Theorem (Turing)

Following languages are undecidable.

LHALT = {〈M〉 | M halts on blank input}
LHALT ,w = {〈M,w〉 | M halts on input w}
Lu = {〈M,w〉 | M accepts w}

Exercise: Prove that the above languages can be reduced to each
other.

Two proofs

A two step one based on Cantor’s diagonalization

A slick one but essentially the same idea in a different fashion

Chandra (UIUC) CS/ECE 374 28 Spring 2021 28 / 35



Turing’s Theorem

Theorem (Turing)

Following languages are undecidable.

LHALT = {〈M〉 | M halts on blank input}
LHALT ,w = {〈M,w〉 | M halts on input w}
Lu = {〈M,w〉 | M accepts w}

Exercise: Prove that the above languages can be reduced to each
other.

Two proofs

A two step one based on Cantor’s diagonalization

A slick one but essentially the same idea in a different fashion

Chandra (UIUC) CS/ECE 374 28 Spring 2021 28 / 35



Diagonalization based proof

TMs can be put in 1-1 correspondence with integers: Mi is i ’th TM

Definition

Ld = {〈i〉 | Mi does not accept 〈i〉}. Same as
Ld = {〈Mi〉 | Mi does not accept 〈i〉}.

Chandra (UIUC) CS/ECE 374 29 Spring 2021 29 / 35



Understanding LdList of all r.e. languages
w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 ...

M0 no no no no no no no no no no ...
M1 yes no no yes no yes yes yes yes no ...
M2 no yes yes no no yes no yes no no ...
M3 no yes no yes no yes no yes no yes ...
M4 yes yes yes yes no no no no no no ...
M5 no no no no no no no no no no ...
M6 yes yes yes yes yes yes yes yes yes yes ...
M7 yes yes no no yes yes yes no no yes ...
M8 no yes no no yes no yes yes yes no ...
M9 no no no yes yes no yes no yes yes ...
... ... ... ... ... ... ... ... ... ... ... ...

Chandra (UIUC) CS/ECE 374 30 Spring 2021 30 / 35



Understanding LdList of all r.e. languages
w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 ...

M0 no no no no no no no no no no ...
M1 yes no no yes no yes yes yes yes no ...
M2 no yes yes no no yes no yes no no ...
M3 no yes no yes no yes no yes no yes ...
M4 yes yes yes yes no no no no no no ...
M5 no no no no no no no no no no ...
M6 yes yes yes yes yes yes yes yes yes yes ...
M7 yes yes no no yes yes yes no no yes ...
M8 no yes no no yes no yes yes yes no ...
M9 no no no yes yes no yes no yes yes ...
... ... ... ... ... ... ... ... ... ... ... ...

Consider for each i, whether or not Mi accepts wiChandra (UIUC) CS/ECE 374 31 Spring 2021 31 / 35



Understanding LdList of all r.e. languages
w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 ...

M0 yes no no no no no no no no no ...
M1 yes yes no yes no yes yes yes yes no ...
M2 no yes no no no yes no yes no no ...
M3 no yes no no no yes no yes no yes ...
M4 yes yes yes yes yes no no no no no ...
M5 no no no no no yes no no no no ...
M6 yes yes yes yes yes yes no yes yes yes ...
M7 yes yes no no yes yes yes yes no yes ...
M8 no yes no no yes no yes yes no no ...
M9 no no no yes yes no yes no yes no ...
... ... ... ... ... ... ... ... ... ... ... ...

Flip “yes” and “no”, defining Ld = {wi | wi not in L(Mi)}Chandra (UIUC) CS/ECE 374 32 Spring 2021 32 / 35



Ld is not r.e

Ld = {〈i〉 | Mi does not accept 〈i〉}.

Theorem

Ld is not r.e.

Proof by contradiction. Suppose it is. Then there is some i∗ such
that Ld = L(Mi∗). Does 〈i∗〉 ∈ Ld ?

If yes then Mi∗ accepts 〈i∗〉 since Ld = L(Mi∗). But this is a
contradiction since i∗ 6∈ Ld by definition of Ld .

If no then Mi∗ does not accept 〈i∗〉 since Ld = L(Mi∗). But
this is a contradiction since i∗ ∈ Ld by definition of Ld .

Thus we obtain a contradiction in both cases which implies that Ld is
not r.e.

Chandra (UIUC) CS/ECE 374 33 Spring 2021 33 / 35



Ld is not r.e

Ld = {〈i〉 | Mi does not accept 〈i〉}.

Theorem

Ld is not r.e.

Proof by contradiction. Suppose it is. Then there is some i∗ such
that Ld = L(Mi∗).

Does 〈i∗〉 ∈ Ld ?

If yes then Mi∗ accepts 〈i∗〉 since Ld = L(Mi∗). But this is a
contradiction since i∗ 6∈ Ld by definition of Ld .

If no then Mi∗ does not accept 〈i∗〉 since Ld = L(Mi∗). But
this is a contradiction since i∗ ∈ Ld by definition of Ld .

Thus we obtain a contradiction in both cases which implies that Ld is
not r.e.

Chandra (UIUC) CS/ECE 374 33 Spring 2021 33 / 35



Ld is not r.e

Ld = {〈i〉 | Mi does not accept 〈i〉}.

Theorem

Ld is not r.e.

Proof by contradiction. Suppose it is. Then there is some i∗ such
that Ld = L(Mi∗). Does 〈i∗〉 ∈ Ld ?

If yes then Mi∗ accepts 〈i∗〉 since Ld = L(Mi∗). But this is a
contradiction since i∗ 6∈ Ld by definition of Ld .

If no then Mi∗ does not accept 〈i∗〉 since Ld = L(Mi∗). But
this is a contradiction since i∗ ∈ Ld by definition of Ld .

Thus we obtain a contradiction in both cases which implies that Ld is
not r.e.

Chandra (UIUC) CS/ECE 374 33 Spring 2021 33 / 35



Ld is not r.e

Ld = {〈i〉 | Mi does not accept 〈i〉}.

Theorem

Ld is not r.e.

Proof by contradiction. Suppose it is. Then there is some i∗ such
that Ld = L(Mi∗). Does 〈i∗〉 ∈ Ld ?

If yes then Mi∗ accepts 〈i∗〉 since Ld = L(Mi∗). But this is a
contradiction since i∗ 6∈ Ld by definition of Ld .

If no then Mi∗ does not accept 〈i∗〉 since Ld = L(Mi∗). But
this is a contradiction since i∗ ∈ Ld by definition of Ld .

Thus we obtain a contradiction in both cases which implies that Ld is
not r.e.

Chandra (UIUC) CS/ECE 374 33 Spring 2021 33 / 35



Ld is not r.e

Ld = {〈i〉 | Mi does not accept 〈i〉}.

Theorem

Ld is not r.e.

Proof by contradiction. Suppose it is. Then there is some i∗ such
that Ld = L(Mi∗). Does 〈i∗〉 ∈ Ld ?

If yes then Mi∗ accepts 〈i∗〉 since Ld = L(Mi∗). But this is a
contradiction since i∗ 6∈ Ld by definition of Ld .

If no then Mi∗ does not accept 〈i∗〉 since Ld = L(Mi∗). But
this is a contradiction since i∗ ∈ Ld by definition of Ld .

Thus we obtain a contradiction in both cases which implies that Ld is
not r.e.

Chandra (UIUC) CS/ECE 374 33 Spring 2021 33 / 35



Ld is not r.e

Ld = {〈i〉 | Mi does not accept 〈i〉}.

Theorem

Ld is not r.e.

Proof by contradiction. Suppose it is. Then there is some i∗ such
that Ld = L(Mi∗). Does 〈i∗〉 ∈ Ld ?

If yes then Mi∗ accepts 〈i∗〉 since Ld = L(Mi∗). But this is a
contradiction since i∗ 6∈ Ld by definition of Ld .

If no then Mi∗ does not accept 〈i∗〉 since Ld = L(Mi∗). But
this is a contradiction since i∗ ∈ Ld by definition of Ld .

Thus we obtain a contradiction in both cases which implies that Ld is
not r.e.

Chandra (UIUC) CS/ECE 374 33 Spring 2021 33 / 35



Ld is not r.e implies Lu is not decidable

Lemma

Ld ≤ L̄u . That is, if there is an algorithm for L̄u then there is an
algorithm for Ld . Equivalently, if there is an algorithm for Lu then
there is an algorithm for Ld .

Algorithm for Ld from an algorithm for Lu :

Given 〈i〉 we simply feed 〈Mi , i〉 to algorithm for Lu

If algorithm for Lu says NO return YES Else return NO

Corollary

Lu is undecidable.

Corollary

LHALT is undecidable.

Chandra (UIUC) CS/ECE 374 34 Spring 2021 34 / 35



Ld is not r.e implies Lu is not decidable

Lemma

Ld ≤ L̄u . That is, if there is an algorithm for L̄u then there is an
algorithm for Ld . Equivalently, if there is an algorithm for Lu then
there is an algorithm for Ld .

Algorithm for Ld from an algorithm for Lu :

Given 〈i〉 we simply feed 〈Mi , i〉 to algorithm for Lu

If algorithm for Lu says NO return YES Else return NO

Corollary

Lu is undecidable.

Corollary

LHALT is undecidable.

Chandra (UIUC) CS/ECE 374 34 Spring 2021 34 / 35



Ld is not r.e implies Lu is not decidable

Lemma

Ld ≤ L̄u . That is, if there is an algorithm for L̄u then there is an
algorithm for Ld . Equivalently, if there is an algorithm for Lu then
there is an algorithm for Ld .

Algorithm for Ld from an algorithm for Lu :

Given 〈i〉 we simply feed 〈Mi , i〉 to algorithm for Lu

If algorithm for Lu says NO return YES Else return NO

Corollary

Lu is undecidable.

Corollary

LHALT is undecidable.

Chandra (UIUC) CS/ECE 374 34 Spring 2021 34 / 35



The Big Picture

Regular

CFLs

.

.

.
P
NP
EXP

.

.

.

.

.

.

.

.RECURSIVE

.

.

.R. E. .
.

.
.
.

NPC

LuUNDECIDABLE
not even 
accepted by 
a TM

Chandra (UIUC) CS/ECE 374 35 Spring 2021 35 / 35


	TM Recap and Recursive/Decidable Languages
	Undecidable Languages and Proofs via Reductions
	Undecidablity of Halting

