CS/ECE 374: Algorithms & Models of Computation

Undecidability and Reductions

Lecture 20 April 20, 2021

Part I

TM Recap and Recursive/Decidable Languages

Turing Machine

- DFA with infinite tap
- One move: read, write, move one cell, change state

Turing Machine

- DFA with infinite tap
- One move: read, write, move one cell, change state

Spring 2021

3/35

On a given input string w a TM M does one of the following:

- halt and accept w
- halt and reject w
- go into an infinite loop (not halt)
- ullet crash in which case we think of it as rejecting $oldsymbol{w}$

Chandra (UIUC) CS/ECE 374 3

Definition

Given TM M, $L(M) = \{w \in \Sigma^* \mid M \text{ accepts } w\}$. We say M accepts L.

Caveat: A language L can be accepted by many different TMs.

Definition

Given TM M, $L(M) = \{w \in \Sigma^* \mid M \text{ accepts } w\}$. We say M accepts L.

Caveat: A language L can be accepted by many different TMs.

Definition

M is an **algorithm** if it halts on every input and accepts/rejects.

Definition

Given TM M, $L(M) = \{w \in \Sigma^* \mid M \text{ accepts } w\}$. We say M accepts L.

Caveat: A language L can be accepted by many different TMs.

Definition

M is an **algorithm** if it halts on every input and accepts/rejects.

Definition

A language L is **decidable (or recursive)** if there is an algorithm M such that L = L(M).

Definition

Given TM M, $L(M) = \{w \in \Sigma^* \mid M \text{ accepts } w\}$.

We say M accepts \hat{L} .

Caveat: A language L can be accepted by many different TMs.

Definition

M is an **algorithm** if it halts on every input and accepts/rejects.

Definition

A language L is **decidable (or recursive)** if there is an algorithm M such that L = L(M).

Definition

A language L is **recursively enumerable** if there is a TM M such that L = L(M).

- If L is recursive then $\bar{L} = \Sigma^* L$ is also recursive
- If L is recursive then L is a r.e.

- If L is recursive then $\bar{L} = \Sigma^* L$ is also recursive
- If L is recursive then L is a r.e.
- Suppose L is r.e. L = L(M) for some M.
 - If $w \in L$ then M halts and accepts w.

Chandra (UIUC) CS/ECE 374 5 Spring 2021 5 / 35

- If L is recursive then $\bar{L} = \Sigma^* L$ is also recursive
- If L is recursive then L is a r.e.
- Suppose L is r.e. L = L(M) for some M.
 - If $w \in L$ then M halts and accepts w.
 - If $w \notin L$ then

- If L is recursive then $\bar{L} = \Sigma^* L$ is also recursive
- If L is recursive then L is a r.e.
- Suppose L is r.e. L = L(M) for some M.
 - If $w \in L$ then M halts and accepts w.
 - If w ∉ L then M may or may not halt! If M halts then it rejects w.

Chandra (UIUC) CS/ECE 374 5 Spring 2021 5 / 35

- If L is recursive then $\bar{L} = \Sigma^* L$ is also recursive
- If L is recursive then L is a r.e.
- Suppose L is r.e. L = L(M) for some M.
 - If $w \in L$ then M halts and accepts w.
 - If w ∉ L then M may or may not halt! If M halts then it rejects w.

Question: Are r.e languages interesting? And why?

- Technical/mathematical reasons
- Pragmatic reasons. We are used to programs that are correct, but are willing to give up on efficiency/halting.

- If L is recursive then $\bar{L} = \Sigma^* L$ is also recursive
- If L is recursive then L is a r.e.
- Suppose L is r.e. L = L(M) for some M.
 - If $w \in L$ then M halts and accepts w.
 - If w ∉ L then M may or may not halt! If M halts then it rejects w.

Question: Are r.e languages interesting? And why?

- Technical/mathematical reasons
- Pragmatic reasons. We are used to programs that are correct, but are willing to give up on efficiency/halting.

Definition

L is **undecidable** if there is no algorithm M such that L = L(M). L is **not r.e** if there is no TM M such that L = L(M).

Universal TM

A single TM that can simulate other TMs. Basis of modern computers. Single computer that runs many different programs.

• UTM takes as input $\langle M \rangle$ (encoding of a TM M) and a string w. Typically written as $\langle M, w \rangle$.

Universal TM

A single TM that can simulate other TMs. Basis of modern computers. Single computer that runs many different programs.

- UTM takes as input $\langle M \rangle$ (encoding of a TM M) and a string w. Typically written as $\langle M, w \rangle$.
- UTM simulates M on w.
 - If M accepts w then UTM accepts its input $\langle M, w \rangle$.
 - If M halts and rejects w then UTM rejects its input $\langle M, w \rangle$.
 - If M does not halt on w then UTM also does not halt on input $\langle M, w \rangle$ and hence does not accept its input.

Universal TM

A single TM that can simulate other TMs. Basis of modern computers. Single computer that runs many different programs.

- UTM takes as input $\langle M \rangle$ (encoding of a TM M) and a string w. Typically written as $\langle M, w \rangle$.
- UTM simulates M on w.
 - If M accepts w then UTM accepts its input $\langle M, w \rangle$.
 - If M halts and rejects w then UTM rejects its input $\langle M, w \rangle$.
 - If M does not halt on w then UTM also does not halt on input $\langle M, w \rangle$ and hence does not accept its input.
- What is the language of UTM? Special name called Universal Language denote by $\boldsymbol{L_u}$.

$$L_u = \{ \langle M, w \rangle \mid M \text{ accepts } w. \}.$$

Encoding TMs

Observation

There is a fixed encoding such that every TM M can be represented as a unique binary string.

Equivalently we think of a TM as simply a program which is a string.

For each string that is not a valid encoding we associate a *dummy* TM that does not accept any string. Why?

Encoding TMs

Observation

There is a fixed encoding such that every TM M can be represented as a unique binary string.

Equivalently we think of a TM as simply a program which is a string.

For each string that is not a valid encoding we associate a *dummy* TM that does not accept any string. Why?

One-to-one correspondence between binary strings and TMs.

 M_i is the the TM associate with integer i

How many TMs?

One-to-one correspondence between integers and TMs.

Proposition

The number of TMs is countably infinite.

How many TMs?

One-to-one correspondence between integers and TMs.

Proposition

The number of TMs is countably infinite.

Easy but important corollaries:

- Hence, countably infinite number of r.e (hence also recursive) languages
- Number of languages is uncountably infinite! Hence there must be languages that are not r.e/recursive and hence undecidable! In fact, most languages are undecidable!

How many TMs?

One-to-one correspondence between integers and TMs.

Proposition

The number of TMs is countably infinite.

Easy but important corollaries:

- Hence, countably infinite number of r.e (hence also recursive) languages
- Number of languages is uncountably infinite! Hence there must be languages that are not r.e/recursive and hence undecidable! In fact, most languages are undecidable!

Question: Which *interesting* languages are undecidable/not r.e?

Part II

Undecidable Languages and Proofs via Reductions

Undecidable Languages

Counting argument shows that too many languages and too few TMs/programs hence most languages are not decidable.

What "real-world" and "natural" languages are undecidable?

Short answer: reasoning about general programs is difficult.

Chandra (UIUC) CS/ECE 374 10 Spring 2021 10 / 35

Undecidable Languages

Counting argument shows that too many languages and too few TMs/programs hence most languages are not decidable.

What "real-world" and "natural" languages are undecidable?

Short answer: reasoning about general programs is difficult.

Theorem (Turing)

Following languages are undecidable.

- $L_{HALT} = \{ \langle M \rangle \mid M \text{ halts on blank input} \}$
- $L_{HALT,w} = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$
- $L_u = \{\langle M, w \rangle \mid M \text{ accepts } w\}$

Recall that languages are problems. Jeff's notes calls Halting problem *HALT* (the second version)

What else is undecidable?

Via (sometimes highly non-trivial) reductions one can show

- Essentially many questions about sufficiently general programs are undecidable
- Many problems in mathematical logic are undecidable
- Posts correspondence problem which is a string problem
- Tiling problems
- Problems in mathematics such as Diophantine equation solution (Hilbert's 10th problem)

Undecidablity connects computation to mathematics/logic and proofs

What do we want you to know?

- The core undecidable problems (HALT and L_u)
- Ability to do simple reductions that prove undecidability of program behaviour

Reductions

- **1** \mathcal{R} : Reduction $X \to Y$
- \bigcirc \mathcal{A}_{Y} : algorithm for Y:
- \bullet New algorithm for X:

We write X < Y if X reduces to Y

Lemma

If $X \leq Y$ and X is undecidable then Y is undecidable.

Chandra (UIUC) CS/ECE 374 13 Spring 2021 13 / 35

CS 125 assignment

Write a program that prints "Hello World"

```
main() {
    print(''Hello World'')
}
```

CS 125 assignment

Write a program that prints "Hello World"

```
main() {
    print(''Hello World'')
}
```

Question: Can we create an autograder?

CS 125 assignment

Write a program that prints "Hello World"

```
main() {
    print(''Hello World'')
}
```

Question: Can we create an autograder? No! Why?

```
main() {
    stealthcode()
    print(''Hello World'')
}
stealthcode() {
    do this
    do that
    viola
}
```

• Halting problem: given arbitrary program foo(), does it halt?

- Halting problem: given arbitrary program foo(), does it halt?
- Reduction to CS125Autograder: given foo() output foobar()

```
main() {
    foo()
    print(''Hello World'')
}
foo() {
    line 1
    line 2
    ...
}
```

Note: Reduction only needs to add a few lines of code to foo()

- Halting problem: given arbitrary program foo(), does it halt?
- Reduction to CS125Autograder: given foo() output foobar()

```
main() {
    foo()
    print("Hello World")
}
foo() {
    line 1
    line 2
    ...
}
```

Note: Reduction only needs to add a few lines of code to foo()

- foobar() prints "Hello World" if and only if foo() halts!
- If we had CS125Autograder then we can solve Halting. But Halting is hard according to Turing. Hence ...

HALT Decider

Chandra (UIUC) CS/ECE 374 16 Spring 2021 16 / 35

Connection to proofs

Goldbach's conjecture: Every *even* integer \geq 4 can be written as sum of two primes. Made in 1742, still open.

Connection to proofs

Goldbach's conjecture: Every *even* integer \geq 4 can be written as sum of two primes. Made in 1742, still open.

If Halting can be solved then can solve Goldbach's conjecture. How? Can write a program that halts if and only if conjecture is *false*.

```
golbach() {
    n = 4
    repeat
        flag = FALSE
        for (int i = 2, i < n; i + +) do
             If (i \text{ and } (n-i)) are both prime)
                 flag = TRUE; Break
        If (!flag) return ''Goldbach's Conjecture is False''
        n = n + 2
    Until (TRUE)
```

More reduction about languages

We will show following languages about program behaviour are undecidable.

- $L_{374} = \{ \langle M \rangle \mid L(M) = \{0^{374}\} \}$
- $\bullet \ L_{\neq\emptyset} = \{ \langle M \rangle \mid L(M) \neq \emptyset \}$
- a template to show that essentially checking whether a given program's language satisfies some non-trivial property is undecidable

Same proof technique as the one for autograder

Understanding: What is the problem of deciding L_{374} ?

Given an arbitrary program boo(str w) does boo() accept only the string 0^{374} and nothing else?

Understanding: What is the problem of deciding L_{374} ?

Given an arbitrary program boo(str w) does boo() accept only the string 0^{374} and nothing else?

Seems harder than autograder for printing "Hello World"!

Chandra (UIUC) CS/ECE 374 19 Spring 2021 19 / 35

Understanding: What is the problem of deciding L_{374} ?

Given an arbitrary program boo(str w) does boo() accept only the string 0^{374} and nothing else?

Seems harder than autograder for printing "Hello World"!

Prove that if we had a decider Decide L_{374} for L_{374} then we can create a decider for HALT.

Understanding: What is the problem of deciding L_{374} ?

Given an arbitrary program boo(str w) does boo() accept only the string 0^{374} and nothing else?

Seems harder than autograder for printing "Hello World"!

Prove that if we had a decider Decide L_{374} for L_{374} then we can create a decider for HALT.

Recall: Decider for HALT takes an arbitrary program foo() and needs to check if foo() halts.

Understanding: What is the problem of deciding L_{374} ?

Given an arbitrary program boo(str w) does boo() accept only the string 0^{374} and nothing else?

Seems harder than autograder for printing "Hello World"!

Prove that if we had a decider Decide L_{374} for L_{374} then we can create a decider for HALT.

Recall: Decider for HALT takes an arbitrary program foo() and needs to check if foo() halts.

Reduction should transform foo() into a program fooboo() such that answer to fooboo() from $DecideL_{374}$ will let us know if foo() halts.

A simple program *simpleboo*(*str w*)

```
simpeboo(str w) { if (\mathbf{w} = 0^{374}) then return YES return NO }
```

Easy to see that $L(simpleboo()) = \{0^{374}\}.$

A simple program *simpleboo(str w)*

```
 \begin{array}{c|c} {\rm simpeboo(str\ w)\ \{} \\ {\rm if\ } ({\it w}=0^{374}) {\rm\ then\ return\ YES} \\ {\rm\ return\ NO} \\ {\rm\ \}} \end{array}
```

Easy to see that $L(simpleboo()) = \{0^{374}\}.$

Given arbitrary program foo() reduction creates fooboo(str w):

```
fooboo(str w) {
    foo()
    if (w = 0<sup>374</sup>) then Return YES
    return NO
}
foo () {
    code of foo ...
}
```

Lemma

Language of **fooboo**() is $\{0^{374}\}$ if **foo**() halts. Language of **fooboo**() is \emptyset if **foo**() does not halt.

Lemma

Language of **fooboo**() is $\{0^{374}\}$ if **foo**() halts. Language of **fooboo**() is \emptyset if **foo**() does not halt.

Corollary

fooboo() in L_{374} if and only if $foo() \in L_{HALT}$.

Corollary

If L_{374} is decidable then L_{HALT} is decidable. Since L_{HALT} is undecidable L_{374} is undecidable.

Understanding: What is the problem of deciding $L_{\neq \emptyset}$?

Given an arbitrary program boo(str w) does boo() accept any string?

Understanding: What is the problem of deciding $L_{\neq \emptyset}$?

Given an arbitrary program **boo**(**str w**) does **boo**() accept any string?

Reduce from HALT: given arbitrary program foo() create fooboo() such that fooboo() accepts some string iff foo() halts.

A simple program *simpleboo*(*str w*)

```
simpeboo(str w) {
return YES
}
```

Easy to see that $L(simpleboo()) = \Sigma^*$ and hence not empty.

Chandra (UIUC) CS/ECE 374 23 Spring 2021 23 / 35

A simple program *simpleboo(str w)*

```
simpeboo(str w) {
return YES
}
```

Easy to see that $L(simpleboo()) = \Sigma^*$ and hence not empty.

Given arbitrary program foo() reduction creates $fooboo(str\ w)$ as follows

```
fooboo(str w) {
    foo()
    return YES
}
foo () {
    code of foo ...
}
```

Lemma

Language of **fooboo**() is Σ^* if **foo**() halts. Language of **fooboo**() is \emptyset if **foo**() does not halt.

Lemma

Language of **fooboo**() is Σ^* if **foo**() halts. Language of **fooboo**() is \emptyset if **foo**() does not halt.

Corollary

fooboo() in $L_{\neq \emptyset}$ if and only if $foo() \in L_{HALT}$.

Lemma

If **L** is recursive then $\bar{\mathbf{L}} = \Sigma^* - \mathbf{L}$ is recursive.

Lemma

If **L** is recursive then $\bar{\mathbf{L}} = \Sigma^* - \mathbf{L}$ is recursive.

Lemma

Suppose L and \bar{L} are both r.e. Then L is recursive.

Lemma

If **L** is recursive then $\bar{\mathbf{L}} = \Sigma^* - \mathbf{L}$ is recursive.

Lemma

Suppose L and \bar{L} are both r.e. Then L is recursive.

Proof.

We have TMs M, M' such that L = L(M) and $\bar{L} = L(M')$. Construct new TM M^* that on input w simulates both M and M' on w in parallel. One of them has to halt and give right answer.

Lemma

If **L** is recursive then $\bar{\mathbf{L}} = \Sigma^* - \mathbf{L}$ is recursive.

Lemma

Suppose L and \bar{L} are both r.e. Then L is recursive.

Proof.

We have TMs M, M' such that L = L(M) and $\bar{L} = L(M')$. Construct new TM M^* that on input w simulates both M and M' on w in parallel. One of them has to halt and give right answer.

Corollary

Suppose L is r.e but not recursive. Then \bar{L} is not r.e.

Corollary

Suppose L is r.e but not recursive. Then \bar{L} is not r.e.

Thus $\overline{L_{HALT}}$ and $\overline{L_u}$ are not even r.e. What does this mean?

Corollary

Suppose L is r.e but not recursive. Then \bar{L} is not r.e.

Thus $\overline{L_{HALT}}$ and $\overline{L_u}$ are not even r.e. What does this mean?

What problem is $\overline{L_{HALT}}$? Given code/program $\langle M \rangle >$ does it *not* halt on blank input? How can we tell?

We can simulate M using a UTM. How long? If M halts during simulation, UTM can reject $\langle M \rangle$. But if it does not halt after a billion steps can we stop simulation and say for sure that M will not halt? Perhaps there are other ways of figuring this out? Proof says no.

Part III

Undecidablity of Halting

Turing's Theorem

Theorem (Turing)

Following languages are undecidable.

- $L_{HALT} = \{ \langle M \rangle \mid M \text{ halts on blank input} \}$
- $L_{HALT,w} = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$
- $L_u = \{\langle M, w \rangle \mid M \text{ accepts } w\}$

Exercise: Prove that the above languages can be reduced to each other.

Turing's Theorem

Theorem (Turing)

Following languages are undecidable.

- $L_{HALT} = \{ \langle M \rangle \mid M \text{ halts on blank input} \}$
- $L_{HALT,w} = \{\langle M, w \rangle \mid M \text{ halts on input } w\}$
- $L_u = \{\langle M, w \rangle \mid M \text{ accepts } w\}$

Exercise: Prove that the above languages can be reduced to each other.

Two proofs

- A two step one based on Cantor's diagonalization
- A slick one but essentially the same idea in a different fashion

Diagonalization based proof

TMs can be put in 1-1 correspondence with integers: M_i is i'th TM

Definition

 $L_d = \{\langle i \rangle \mid M_i \text{ does not accept } \langle i \rangle \}$. Same as

 $L_d = \{ \langle M_i \rangle \mid M_i \text{ does not accept } \langle i \rangle \}.$

Understanding L_d

	W ₀	W ₁	W ₂	W ₃	W ₄	W ₅	W ₆	W ₇	W ₈	w _g	
Mo	no	no	no	no	no	no	no	no	no	no	
M ₁	yes	no	no	yes	no	yes	yes	yes	yes	no	
M ₂	no	yes	yes	no	no	yes	no	yes	no	no	
M ₃	no	yes	no	yes	no	yes	no	yes	no	yes	
M ₄	yes	yes	yes	yes	no	no	no	no	no	no	
M ₅	no	no	no	no	no	no	no	no	no	no	
M_6	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	
M ₇	yes	yes	no	no	yes	yes	yes	no	no	yes	
M ₈	no	yes	no	no	yes	no	yes	yes	yes	no	
M ₉	no	no	no	yes	yes	no	yes	no	yes	yes	

Understanding L_d

	W ₀	W ₁	W ₂	W ₃	W ₄	W ₅	W ₆	W ₇	W ₈	W ₉	
M ₀	no	no	no	no	no	no	no	no	no	no	
M ₁	yes	no	no	yes	no	yes	yes	yes	yes	no	
M ₂	no	yes	yes	no	no	yes	no	yes	no	no	
M ₃	no	yes	no	yes	no	yes	no	yes	no	yes	
M ₄	yes	yes	yes	yes	no	no	no	no	no	no	
M ₅	no	no	no	no	no	no	no	no	no	no	
M ₆	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	
M ₇	yes	yes	no	no	yes	yes	yes	no	no	yes	
M ₈	no	yes	no	no	yes	no	yes	yes	yes	no	
M ₉	no	no	no	yes	yes	no	yes	no	yes	yes	

Understanding L_d

	W ₀	W ₁	W ₂	W ₃	W ₄	W ₅	W ₆	W ₇	W ₈	W ₉	
M _o	yes	no	no	no	no	no	no	no	no	no	
M ₁	yes	yes	no	yes	no	yes	yes	yes	yes	no	
M ₂	no	yes	no	no	no	yes	no	yes	no	no	
M ₃	no	yes	no	no	no	yes	no	yes	no	yes	
M ₄	yes	yes	yes	yes	yes	no	no	no	no	no	
M ₅	no	no	no	no	no	yes	no	no	no	no	
M ₆	yes	yes	yes	yes	yes	yes	no	yes	yes	yes	
M ₇	yes	yes	no	no	yes	yes	yes	yes	no	yes	
M ₈	no	yes	no	no	yes	no	yes	yes	no	no	
M ₉	no	no	no	yes	yes	no	yes	no	yes	no	

 $L_d = \{\langle i \rangle \mid M_i \text{ does not accept } \langle i \rangle \}.$

Theorem

 L_d is not r.e.

 $L_d = \{\langle i \rangle \mid M_i \text{ does not accept } \langle i \rangle \}.$

Theorem

L_d is not r.e.

Proof by contradiction. Suppose it is. Then there is some i^* such that $L_d = L(M_{i^*})$.

 $L_d = \{\langle i \rangle \mid M_i \text{ does not accept } \langle i \rangle \}.$

Theorem

L_d is not r.e.

Proof by contradiction. Suppose it is. Then there is some i^* such that $L_d = L(M_{i^*})$. Does $\langle i^* \rangle \in L_d$?

 $L_d = \{\langle i \rangle \mid M_i \text{ does not accept } \langle i \rangle \}.$

Theorem

L_d is not r.e.

Proof by contradiction. Suppose it is. Then there is some i^* such that $L_d = L(M_{i^*})$. Does $\langle i^* \rangle \in L_d$?

• If yes then M_{i^*} accepts $\langle i^* \rangle$ since $L_d = L(M_{i^*})$. But this is a contradiction since $i^* \notin L_d$ by definition of L_d .

 $L_d = \{\langle i \rangle \mid M_i \text{ does not accept } \langle i \rangle \}.$

Theorem

L_d is not r.e.

Proof by contradiction. Suppose it is. Then there is some i^* such that $L_d = L(M_{i^*})$. Does $\langle i^* \rangle \in L_d$?

- If yes then M_{i^*} accepts $\langle i^* \rangle$ since $L_d = L(M_{i^*})$. But this is a contradiction since $i^* \not\in L_d$ by definition of L_d .
- If no then M_{i^*} does not accept $\langle i^* \rangle$ since $L_d = L(M_{i^*})$. But this is a contradiction since $i^* \in L_d$ by definition of L_d .

 $L_d = \{\langle i \rangle \mid M_i \text{ does not accept } \langle i \rangle \}.$

Theorem

L_d is not r.e.

Proof by contradiction. Suppose it is. Then there is some i^* such that $L_d = L(M_{i^*})$. Does $\langle i^* \rangle \in L_d$?

- If yes then M_{i^*} accepts $\langle i^* \rangle$ since $L_d = L(M_{i^*})$. But this is a contradiction since $i^* \notin L_d$ by definition of L_d .
- If no then M_{i^*} does not accept $\langle i^* \rangle$ since $L_d = L(M_{i^*})$. But this is a contradiction since $i^* \in L_d$ by definition of L_d .

Thus we obtain a contradiction in both cases which implies that L_d is **not** r.e.

L_d is not r.e implies L_u is not decidable

Lemma

 $\mathbf{L_d} \leq \bar{\mathbf{L_u}}$. That is, if there is an algorithm for $\bar{\mathbf{L_u}}$ then there is an algorithm for $\mathbf{L_d}$. Equivalently, if there is an algorithm for $\mathbf{L_u}$ then there is an algorithm for $\mathbf{L_d}$.

L_d is not r.e implies L_u is not decidable

Lemma

 $L_d \leq \bar{L_u}$. That is, if there is an algorithm for $\bar{L_u}$ then there is an algorithm for L_d . Equivalently, if there is an algorithm for L_u then there is an algorithm for L_d .

Algorithm for L_d from an algorithm for L_u :

- Given $\langle i \rangle$ we simply feed $\langle M_i, i \rangle$ to algorithm for L_u
- ullet If algorithm for L_u says NO return YES Else return NO

L_d is not r.e implies L_u is not decidable

Lemma

 $\mathbf{L_d} \leq \bar{\mathbf{L_u}}$. That is, if there is an algorithm for $\bar{\mathbf{L_u}}$ then there is an algorithm for $\mathbf{L_d}$. Equivalently, if there is an algorithm for $\mathbf{L_u}$ then there is an algorithm for $\mathbf{L_d}$.

Algorithm for L_d from an algorithm for L_u :

- Given $\langle i \rangle$ we simply feed $\langle M_i, i \rangle$ to algorithm for L_u
- ullet If algorithm for L_u says NO return YES Else return NO

Corollary

L,, is undecidable.

Corollary

LHAIT is undecidable.

34

The Big Picture

Chandra (UIUC) CS/ECE 374 35 Spring 2021 35 / 35