Last week: for QuickSort we decided to use median as pivot, and reduced to Selection.

I more general than median!

Imagine (recursively) looking for the median:

\[
\begin{align*}
& \leq A[p] \quad A[p] \geq A[0] \\
\text{if } p > \frac{n}{2} \rightarrow \\
& \text{recurse left} \quad \text{"median" of } A[1..p-1] \\
& \text{is not median of } A[1..p-1].
\end{align*}
\]

Immediately realize that "recursing" requires thinking of the more general Selection problem.

\[\rightarrow \text{Sometimes, to do recursion, sometimes first generalize the problem.} \]

Recursive Backtracking

\[
\begin{array}{c}
\text{n x n chessboard} \\
\text{place n "queens" on the board s.t. none of them are attacking each other (or report impossible).}
\end{array}
\]
Generalize:

Given an n x n chessboard & placements of r queens on the first r rows,
Place n-r queens on the remaining rows
so that no queens attack each other.

```
PlaceQueens(Q[1..r])
if r = n
    return Q
else
    for j = 1 to n
        brute force check if column j is valid for n-r+1
```

Here, which (valid) position to pick?
Recurse me backtracking:
Try all possible choices at current step
 ⇒ recurse
Figure out based on result of recurse all which choice was correct.

(doing DFS through dependency tree of the recursive function)
brute force check if column \(j \) is valid for \(w = r + 1 \)
if so,
 recurse \(w \rightarrow Q(1, \cdots, r) \) appended \(w \rightarrow j \).
if recurse call did not return fail
 return output.

return fail.

X

learn to live

\(\text{学生活} \)

student job

name of a café/bookstore on green st?

Preprocessing problem: given a string \(w \), a dictionary (to some linguistic) \(A \) (e.g. et al.)
can we split the string into valid sequence of words in the dictionary?

BOTHEARTLANDSATURNSPIN

(assume black box access to \(\text{IsWord}(w) \))

BOTHEARTLANDSATURNSPIN

\(\Rightarrow \begin{cases} \text{true} & \text{yes} \ \\
\text{false} & \text{no} \end{cases} \)

\(\Rightarrow \begin{cases} \text{true} & \text{yes} \ \\
\text{false} & \text{no} \end{cases} \)
Is Splittable? \((w \[1 \ldots n]) \) = \(\begin{cases} \text{True} & \text{if } n = 3 \\ \bigvee_{i=1}^{n} \left(\text{isWord}(w \[1 \ldots i]) \land \text{IsSplittable}(w \[i+1 \ldots n]) \right) & \text{o.w.} \end{cases} \)

equivalently:

fix input \(w \[1 \ldots n] \)

Is Splittable? \((i) \) = \(\begin{cases} \text{True} & \text{if } i > n \lor w \[1 \ldots n] = 3 \\ \bigvee_{j=i+1}^{n} \left(\text{isWord}(w \[j \ldots n]) \land \text{IsSplittable}(j + 1) \right) & \text{o.w.} \end{cases} \)

What problem are you really solving recursively?

- what are the recursive subproblems?

what do you need to remember about past decisions?

(optional) Encode subproblem more efficiently?

Longest Increasing Subsequence

Input sequence \(A \[1 \ldots n] \) of numbers (array)

Looking for the length of the longest \(w \) subseq of \(A \).

\(B \[i] > B \[i-1] \) for all \(i > 2 \).

Q: What is a (local) decision we care about?

is \(A \[i] \) in a LIS?

3 1 4 1 5 9 2 6

(String) Sing is a subsequence

a sequence \(B \[1 \ldots n] \) is increasing.
Q: What is the actual problem I'm solving recursively?

LIS greater \((A[1:n], k)\) =

\[
\begin{cases}
0 & \text{if } A[0] = 0 \\
\max \{1 + \text{LIS greater } (A[i+1:n], k) \} & \text{if } A[i] > k \\
\text{LIS greater } (A[1:i-1:n], k) & \text{o.w.}
\end{cases}
\]

Q: What to remember? \(k\) for solving LIS for \(k \geq 2\).

Q: Can we create more efficiently? Yes!

How to use LIS greater to solve original problem?

\[\text{LIS}(A[1:n]) = \text{LIS greater}(1, -\infty)\]