Starting today: Algorithms

- previously: TMs capture “universal computation”
- next few weeks: do things on a universal computer
 - but which ones? and what are we doing on them?

- Formally, an algorithmic problem is the task of computing some function \(f : \Sigma^* \rightarrow \Sigma^* \) (restricted output to \(\{0,1\} \))

- input \(w \in \Sigma^* \) is an encoding of a “valid input”
- output \(x \in \Sigma^* \) is also an encoding

on algorithm is... some kind of “program” \(A \) s.t.
\[A(w) = f(w) \quad \forall w \in \Sigma^* \]

What (Turing-complete) model will we assume?
- Unit-cost RAM model
 - basic data type is an integer
 - numbers fit into “words”
 - arithmetic/comparison on words take constant time
 - bitwise ops/flips, ceilings require some care.
 - arrays allow random access
 - pointers store addresses in words

Caution:
- sometimes we have situations where unit-cost makes sense
 e.g., analyze arithmetic in terms of all \#bits
- assumptions only valid if algo’s do not produce overly large intermediary values.
 - large enough numbers need to broken up into multiple words
When all else fails, fall back to TMs.

Reductions \(A \leq B \)

Informally, given an instance of problem \(A \)
convert it into an instance of problem \(B \)
apply known algorithm to problem \(B \)
convert output into correct solution for problem \(A \)

This is a very powerful algorithms design technique.

Instead of reinventing a tool, use someone else's work.

Quite often in this class the easiest way to come up
with an algorithm is to reduce your problem to another
problem with existing algorithm.

Example: given an array of integers, are there any duplicates?

Naive algorithm: double for loop:

\[
\begin{align*}
&\text{for } i \text{ from 1 to } n \\
&\quad \text{for } j \text{ from 1 to } n:\ \\
&\quad \text{if } A[i] = A[j] \\
&\quad \quad \text{return true}
\end{align*}
\]

Better idea: reduce to sorting.

\[
\begin{align*}
&\text{sort } A \\
&\text{for } i \text{ from 1 to } n-1 \\
&\quad \text{if } A[i] = A[i+1] \\
&\quad \quad \text{return true}
\end{align*}
\]

Next 2.5 weeks: special kind of reduction

called Recursion
Next 2 1/2 weeks: special kind of reduction called **recursion**

we did a lot of recursion during automata, hopefully you know by now:

Recursion = induction

Recursion as an algorithmic technique:
reduce the problem of solving some instance of this problem
to the problem of solving a smaller instance of
the same problem

Towers of Hanoi

allowed to:
- move one disk at a time
 - (only the top disk)
- put smaller disks on top of larger ones

goal: start w/ a stack of disks on peg
& move it to another peg

if \(n > 0 \):

\[
\text{Hanoi}(n-1, \text{src}, \text{tmp}, \text{dst})
\]

move disk \(n \) from \(\text{src} \) to \(\text{dst} \)

\[
\text{Hanoi}(n-1, \text{tmp}, \text{dst}, \text{src})
\]

Running time of this algo? (Can't just move)

\[
T(n) = \# \text{ of moves to get } n \text{ disks from } \text{src} \text{ to } \text{dst}.
\]
\[T(n) = \begin{cases}
0 & \text{if } n = 0 \\
T(n-1) + 1 + T(n-1) & \text{if } n > 0.
\end{cases} \]

Guess \(T(n) = 2^n - 1 \).

<table>
<thead>
<tr>
<th>Base case: (n = 0), (2^0 - 1 = 0).</th>
<th>Assume for (k < n) that (T(k) = 2^k - 1).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assume for (k < n) that (T(k) = 2^k - 1).</td>
<td>Assume for (k \leq n) that (T(k) = 2^k - 1).</td>
</tr>
<tr>
<td>(T(n) = 2T(n-1) + 1) def. (= 2(2^{n-1}) + 1)</td>
<td>Two cases:</td>
</tr>
<tr>
<td>(= 2^n - 1) math. \</td>
<td>(n = 0): (T(0) = 0 = 2^0 - 1)</td>
</tr>
<tr>
<td>\</td>
<td>(n > 0): (same as left side)</td>
</tr>
</tbody>
</table>

Conclusion: \(T(n) = O(2^n) \)

Merge Sort

Input: \text{SORTINGEXAMPLE}\n
Divide: \text{SORTINGEXAMPLE}\n
Recurse Left: \text{INORST}\n
Recurse Right: \text{AGECLMPX}\n
Merge: \text{AEGLMNOPRSTX}\n
\[
\text{MergeSort}(A[1..n]) \]

\[
\begin{cases}
\text{if } n > 1 \\
\text{MergeSort}(A[1..n]) \\
\text{MergeSort}(A[m+1..n]) \end{cases}
\]

\[
\text{Merge}(A[1..n], m) \]

\[
\text{recursion funny!} \text{ recursion funny!} \]

\[
\text{reduced to the problem of merging two sorted arrays.}
\]
Merge:

if \(X \) empty:
 set \(Z \) to be \(Y \).

routine of merge (exercise).

\[
T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + O(n) \\
\text{(justification for ignoring } \frac{n}{L} \text{ for Big O)}
\]

- see Jeff's book

Recursion Tree:

"extrawork":
- (non-recursive part)
- of \(T(n) \)
- (recursive calls in \(T(n) \))

\[
\sum_{l=0}^{H} \left(\text{total work at level } l \right)
\]

+ base case work

level \(l \) corresponds to \(T\left(\frac{n}{2^l}\right) \)

at level \(H, T\left(\frac{n}{2^H}\right) \) is a base case

\(H = \text{const.} \) solve for \(H \rightarrow H = O(\log n) \)
Worst case analysis of Quicksort

\[T(n) = O(n) + \max_r \left(T(r-1) + T(n-r) \right) \]
\[\leq O(n) + T(0) + T(n-1) \]

- At level \(l \): \(T(n-l) \).
- At level \(H \): \(n-H = \text{const} \)
 So \(H = O(n) \).

\[T(n) = O(n^2) \]

\[T(n) = T(\lceil n/2 \rceil) + 1 \]

- At level \(l \): \(T(n^{1/2^l}) \)
 \(H: n^{1/2^H} = \text{const} \)
 \(\log(n^{1/2^H}) = \log(\text{const}) \)
 \(\Rightarrow 2^{-H} \log n = \text{konst} \)