
CS/ECE 374 Regular Languages are Closed Under Cycle Spring 2021

Given a language L over an arbitrary alphabet Σ, we can define the language

Cycle(L) := {y x | x y ∈ L}

We can then ask the question, if L is regular, is Cycle(L) also regular? The answer is yes.
Since L is regular, there exists some DFA M = (Q,δ, s, A) such that L = L(M). We will construct
a new NFA N from M such that N accepts Cycle(L).

Given a string w, we need N to accept w if and only if w ∈ Cycle(L). This means that there
exists some way to split w into two substrings y and x such that w = y x and x y ∈ L. We are
immediately confronted with two problems:

(i) There are |w|+ 1 ways to split w into y and x , and we do not know which of these ways
result in x y being a string in L.

(ii) Even if there is a way to split w into w= y x such that x y ∈ L, we still need to contend with
the fact that we are not reading x y , but rather y x , and furthermore since we are reading
the input string one character at a time, we know nothing about how many characters
belong to the y part (or how many characters belong to the x part) ahead of time.

We will get around both issues using non-determinism.

Here’s the idea. Suppose that w ∈ Cycle(L). We would like to guess a decomposition w= y x
so that x y ∈ L, and then feed x y through M to verify that x y ∈ L. But we can’t, since we don’t
know anything about w yet. But we can try to simulate and guess some other things.

• Suppose we could guess the state qx := δ∗(s, x) (i.e, the state we land on in M if, starting
from s, we read in x). If we are correct, then starting at qx and reading the first |y| characters
of w (i.e., y) gets us to an accepting state, since δ∗(qx , y) = δ∗(δ∗(s, x), y) = δ∗(s, x y)
which as an accepting state by the assumption x y ∈ L.

• Since we don’t actually know y, we can do the following instead. Suppose that, starting
from qx , we read some number of characters from w and end at an accepting state. At this
point, we could guess that we actually correctly read y .

• At this point, we have made two guesses: the state qx , and if we are done reading y . But
how do we know that our two guesses were actually correct?
Well, suppose we go back to the starting state s and read in the rest of w. If our two guesses
were correct, then the rest of the input is x , and reading the rest of the input should get us
to δ∗(s, x) = qx .

Well, how do we actually do any of that? Well, we will build an NFA that simulates doing the
above. This NFA needs to keep track of at least the following pieces of information: the state
we guessed to be qx , whether or not we have guessed that we are done reading y, and what
state we’re at in the simulation of the DFA M . Before doing anything, this NFA needs to simulate
starting at the guessed state qx , and then after guessing that we are done reading y, the NFA
needs to simulate starting at s again. The NFA will accept if and only if the state we end up at is
in fact qx .
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Thus, given a DFA M = (Q,δ, s, A) for L, we construct an NFA N = (Q′,δ′, s′, A′) for Cycle(L) as
follows.

• The states of N are

Q′ :=
�

Q×Q× {Before,After}
�

∪
�

s′
	

where s′ is a new starting state.
The meaning of a state (q, r, b) ∈Q×Q× {Before,After} is as follows: q is the state we
guessed to be qx , r is the current state in the simulation, and b is Before if we haven’t
guessed that y is done, and After if we have.

• From the new starting state s′, we have ε-transitions to each state of the form (q, q,Before).
Each of these ε-transitions represents guessing a state q to be qx and starting the simulation
of M at q. We need these to be ε-transitions so that we can non-deterministically choose
one of them before the simulation.
For each state (q, r,Before) where r ∈ A (r is an accepting state in M), we have an
ε-transition to the state (q, s,After) (s is the starting state of M). This represents the
possibility of guessing that we are done reading y, and are thus ready to read in x and
verify that the initial guess was correct. Even if M only had one accepting state r, we
would still use an ε-transition instead of combining (q, r,Before) and (q, s,After) to avoid
the possibility of being able to move back to Before states from an After state.
Otherwise, we are just reading in characters and simulating various parts of M on the
input. This can be done by advancing r along δ.
In summary, we can write down the following transition function δ′:

δ′(s′,ε) := {(q, q,Before) | q ∈Q}

For r ∈ A, δ′
�

(q, r,Before),ε
�

:= {(q, s,After)}
δ′
�

(q, r, b), a
�

:= {(q,δ(r, a), b)}

All unspecified transitions do not exist (i.e., have value ∅).

• Finally, all that remains to be specified is the set of accepting states A′. Recall that our
guesses were correct if, after reading in what we guessed to be the x part of w from s, we
end at what we guessed to be qx . In other words:

A′ := {(q, q,After) | q ∈Q}

This completes the construction.
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As a concrete example, consider the following DFA for the language L = L(00∗11∗):

s a b f
0

1

1

0

0

1

0,1

The NFA we construct for Cycle(L) is shown below. Bolded transitions are new ε-
transitions; all other transitions are the same as their corresponding transitions in the DFA
above.

{s} ×Q× {Before} {s} ×Q× {After}

{a} ×Q× {Before} {a} ×Q× {After}

{b} ×Q× {Before} {b} ×Q× {After}

{ f } ×Q× {Before} { f } ×Q× {After}
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Finally, let’s verify that the general construction is correct, i.e., L(N) = Cycle(L). The
following “proof” is missing a few details, in particular, a proof of the interaction between (δ′)∗
and δ∗. Feel free to follow along on the concrete example on the previous page.

• First, suppose that w ∈ L(N). Then there is some path that we can follow while reading
in w such that, starting from s′, we reach an accepting state, i.e., a state of the form
(q, q,After).
By construction, this path must start by taking an ε-transition to a state of the form
(q, q,Before), followed by some walk inside of the states {q} ×Q× {Before}. At some
point, an ε-transition leaving {q} ×Q× {Before} must be taken; call the input read up to
this point y. The ε-transition leaving {q} ×Q× {Before} must come from a state of the
form (q, r,Before) where r ∈ A, and goes to (q, s,After); at this point reading the rest of
the input must lead to (q, q,After). Call the rest of the input x .
At this point we know that δ∗(s, x) = q, and furthermore δ∗(q, y) ∈ A. In other words,
x y ∈ L. We therefore conclude that w= y x ∈ Cycle(L).
This shows that L(N) ⊆ Cycle(L).

• Next, suppose w ∈ Cycle(L). Then w= y x where x y ∈ L. We need to show that there is
a path from s′ to a an accepting state in N , i.e., a state of the form (q, q,After).
Set q = δ∗(s, x). Before reading any of w we take an ε-transition to (q, q,Before). After
reading y , we must be in the state (q,δ∗(q, y),Before)where δ∗(q, y) = δ∗(δ∗(s, x), y) =
δ∗(s, x y) ∈ A. By construction there exists an ε-transition from (q,δ∗(q, y),Before) to
(q, s,After). After taking this transition, we read in the rest of w (i.e., x) and reach
(q,δ∗(s, x),After) = (q, q,After), which is an accepting state of N .
We therefore conclude that w ∈ L(N), and thus Cycle(L) ⊆ L(N).
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