
CS/ECE 374 Lab 9 Solutions Spring 2021

For each of the problems below, transform the input into a graph and apply a standard graph
algorithm that you’ve seen in class. Whenever you use a standard graph algorithm, you must
provide the following information. (I recommend actually using a bulleted list.)

• What are the vertices?
• What are the edges? Are they directed or undirected?
• If the vertices and/or edges have associated values, what are they?
• What problem do you need to solve on this graph?
• What standard algorithm are you using to solve that problem?
• What is the running time of your entire algorithm, including the time to build the graph, as

a function of the original input parameters?

1. Snakes and Ladders is played on an n× n grid of squares, numbered consecutively from 1
to n2, starting in the bottom left corner and proceeding row by row from bottom to top,
with rows alternating to the left and right. Certain pairs of squares, always in different
rows, are connected by either “snakes” (leading down) or “ladders” (leading up). Each
square can be an endpoint of at most one snake or ladder.

You start with a token in cell 1, in the bottom left corner. In each move, you advance
your token up to k positions, for some fixed constant k (typically 6). If the token ends the
move at the top end of a snake, you must slide the token down to the bottom of that snake.
If the token ends the move at the bottom end of a ladder, you may move the token up to
the top of that ladder.

Describe and analyze an algorithm to compute the smallest number of moves required
for a token to move from the first square to the last square on an n× n Snakes and Ladders
board. The input to your algorithm consists of an n×n grid where each cell either contains
a snake or ladder pointing towards another cell, or nothing at all.

Solution: We reduce to a shortest-path problem in a directed graph G = (V, E) as
follows:

• The vertices of G correspond to cells on the board, identified by integers 1 to n2.
• The edges of G correspond to legal moves. From each cell there are at most 2k

possible moves: for each integer i from 1 to k, we can move forward i spaces,
and then, if we are at the bottom of a ladder, we can either move to the top of
that ladder or not; if we are at the top of a snake, we must move to the bottom
of the snake. Edges are directed.

• We do not need to associate additional values with the vertices or edges.
• We need to find the shortest path from vertex 1 to vertex n2.
• We can solve this problem using breadth-first search.
• Constructing the graph by brute force takes O(V + E) time, as does running

breadth-first search. Thus the algorithm runs in O(V + E) = O(n2 + 2kn2) =
O(kn2) time. �

1

CS/ECE 374 Lab 9 Solutions Spring 2021

2. Let G be a connected undirected graph. Suppose we start with two coins on two arbitrarily
chosen vertices of G. At every step, each coinmustmove to an adjacent vertex. Describe and
analyze an algorithm to compute the minimum number of steps to reach a configuration
where both coins are on the same vertex, or to report correctly that no such configuration
is reachable. The input to your algorithm consists of a graph G = (V, E) and two vertices
u, v ∈ V (which may or may not be distinct).

Solution (product construction): Let G = (V, E) denote the input graph, and let s
and t denote the initial locations of the two coins. We reduce to a shortest-path
problem in an undirected graph G′ = (V ′, E′) as follows:

• V ′ = V × V = {(u, v) | u ∈ V and v ∈ V}); the vertices of G′ correspond to
possible placements of the two coins.

• E′ = {(u, v)(u′, v′) | uu′ ∈ E and vv′ ∈ E}. The edges of G′ correspond to legal
moves by the two coins. Edges are undirected, because any move by the two
coins can be reversed.

• We do not need to associate additional values with the vertices or edges.
• We need to find the shortest-path distance from vertex (s, t) to any vertex of the

form (v, v).
• First we compute the shortest-path distance from (s, t) to every vertex in G′ that

is reachable from (s, t) using breadth-first search. Then a simple for-loop over
the vertices of the input graph G finds the minimum distance to any marked
vertex of the form (v, v). In particular, if no vertex (v, v) is reachable from (s, t),
then no vertex (v, v) will be marked by the breadth-first search, and so the
algorithm will correctly report min∅=∞.

• Constructing the graph by brute force takes O(V ′ + E′) time, as does running
breadth-first search. Thus the resulting algorithm runs inO(V ′+E′) =O(V2+E2)
time.

�

Solution (parity construction): Let G = (V, E) denote the input graph, and let s
and t denote the initial locations of the two coins. Any sequence of k moves that bring
the two coins to a common vertex x defines a walk of length 2k from s through x to t.
Thus, we are looking for the shortest walk from s to t with even length. We reduce to
a standard shortest-path problem in a new graph G′ = (V ′, E′) as follows:

• V ′ = V × {0, 1}= {(v, b) | b ∈ V and b ∈ {0, 1}}).
• E′ = {(u, b)(v, 1 − b) | uv ∈ E and b ∈ {0, 1}}. Edges in G′ are undirected,

because edges in the original graph G are undirected.
For any walk v0�v1�v2� · · ·�v` in G, there is a corresponding walk (v0, 0)�

(v1, 1)�(v2, 0)� · · ·�(v`,`mod 2) in G′. Thus, every even-length walk from s
to t in G corresponds to a walk from (s, 0) to (t, 0) in G′ and vice versa.

• We do not need to associate additional values with the vertices or edges.
• We need to find the shortest-path distance in G′ from vertex (s, 0) to (t, 0).
• We can compute this shortest-path distance using breadth-first search starting

2

CS/ECE 374 Lab 9 Solutions Spring 2021

at (s, 0). In particular, if there is no even-length path from s to t in G, the
breadth-first search will not mark (t, 0).

• Constructing the graph by brute force takes O(V ′ + E′) time, as does running
breadth-first search. Thus the resulting algorithm runs in O(V ′+ E′) = O(V +E)
time.

�

3

CS/ECE 374 Lab 9 Solutions Spring 2021

Think about later:

3. Let G be an undirected graph. Suppose we start with 374 coins on 374 arbitrarily chosen
vertices of G. At every step, each coin must move to an adjacent vertex. Describe and
analyze an efficient algorithm to compute the minimum number of steps to reach a
configuration where all 374 coins are on the same vertex, or to report correctly that no
such configuration is reachable. The input to your algorithm consists of a graph G = (V, E)
and starting vertices s1, s2, . . . , s374 (which may or may not be distinct).

Solution (product construction): We reduce to a shortest-path problem in an undi-
rected graph G′ = (V ′, E′) as follows:

• V ′ = V 374 =
374
︷ ︸︸ ︷

V × V × · · · × V = {(v1, v2, . . . , v374) | vi ∈ V for all i}; the vertices
of G′ correspond to possible placements of the 374 coins.

• E′ = {(u1, u2, . . . , u374)(v1, v2, . . . , v374) | ui vi ∈ E for all i}. The edges of G′

correspond to legal moves by the 374 coins. Edges are undirected, because any
move by the two coins can be reversed.

• We do not need to associate additional values with the vertices or edges.
• We need to find the shortest-path distance from s = (s1, s2, . . . , s374) to any vertex

of the form (v, v, . . . , v).
• First we compute the shortest-path distance from s to every vertex in G′ that

is reachable from s using breadth-first search. Then a simple for-loop over the
vertices of the input graph G finds the minimum distance to any marked vertex
of the form (v, v, . . . , v). In particular, if no vertex (v, v, . . . , v) is reachable from s,
then no vertex (v, v, . . . , v) will be marked by the breadth-first search, and so
the algorithm will correctly report min∅=∞.

• Constructing the graph by brute force takes O(V ′ + E′) time, as does running
breadth-first search. Thus the resulting algorithm runs in O(V ′+ E′) = O(V374+
E374) time.

�

Solution (parity construction): I claim that (1) there is a sequence of k steps that
move all coins to some vertex t if and only if (2) there is a walk of length ki from
starting vertex si to t, for each vertex i, such that k = maxi ki and either all ki are
even or all ki are odd.

• The implication (1) =⇒ (2) follows immediately by setting ki = k for all i.
• Any walk of length ` can be turned into a walk of length `+ 2 with the same

endpoints by repeating an edge, and therefore into a walk of length `+ 2 j for
any integer j ≥ 0. The implication (2) =⇒ (1) follows immediately.

Now for any vertex v and any index i, we define two integers:

• deven(si , v) is the length of the shortest even-length walk from si to v (or∞ if
there is no such walk).

4

CS/ECE 374 Lab 9 Solutions Spring 2021

• dodd(si , v) is the length of the shortest odd-length walk from si to v (or∞ if
there is no such walk).

• MinSteps(v) is the minimum number of steps required to move all coins to v. My
earlier claim implies that

MinSteps(v) =min
n

max
i

deven(si , v), max
i

dodd(si , v)
o

We need to compute min {MinSteps(v) | v ∈ V}.
Consider the unweighted undirected graph G′ = (V ′, E′) where V ′ = V × {0, 1}

and E′ = {(u, 0)(v, 1) | uv ∈ E} ∪ {(u, 1)(v, 0) | uv ∈ E}. We immediately have

deven(si , v) = d ′((si , 0), (v, 0)) and dodd(si , v) = d ′((si , 0), (v, 1)),

where d ′(u′, v′) is the shortest-path distance from u′ to v′ in G′. Thus, we can
compute deven(si , v) and dodd(si , v) for every vertex v ∈ V and every index i by
running 374 breadth-first searches in G′, each starting at some vertex (si , 0), in total
374×O(V ′ + E′) = O(V + E) time. After computing these distances, we can easily
compute min {MinSteps(v) | v ∈ V} in O(V) time by brute force, because 374= O(1).

Altogether, our algorithm runs in O(V + E) time. �

5

