
CS/ECE 374 Lab 8½ Spring 2021

1. Given a graph G = (V, E), a vertex cover of G is a subset S ⊆ V of vertices such that for each
edge e = (u, v) in G, u or v is in S. That is, the vertices in S cover all the edges. Given a tree
T = (V, E) and a non-negative weight w(v) for each vertex v ∈ V , give an algorithm that computes
the minimum weight vertex cover of T ; the weight of a cover S is the sum of the weights of the
vertices in S. In the tree below, {B, E, G} is a vertex cover while {C , E, F} is not a vertex cover. It
is helpful to root the tree.

196 Algorithms

with which keywords are accessed, we can use an even more fine-tuned cost function, the average
number of comparisons to look up a word. For the search tree on the left, it is

cost = 1(0.04) + 2(0.40 + 0.10) + 3(0.05 + 0.08 + 0.10 + 0.23) = 2.42.

By this measure, the best search tree is the one on the right, which has a cost of 2.18.
Give an efficient algorithm for the following task.

Input: n words (in sorted order); frequencies of these words: p1, p2, . . . , pn.
Output: The binary search tree of lowest cost (defined above as the expected number
of comparisons in looking up a word).

6.21. A vertex cover of a graph G = (V, E) is a subset of vertices S ⊆ V that includes at least one
endpoint of every edge in E. Give a linear-time algorithm for the following task.

Input: An undirected tree T = (V, E).
Output: The size of the smallest vertex cover of T .

For instance, in the following tree, possible vertex covers include {A, B, C, D, E, F, G} and {A, C, D, F}
but not {C, E, F}. The smallest vertex cover has size 3: {B, E, G}.

E

DA

B

C F

G

6.22. Give an O(nt) algorithm for the following task.

Input: A list of n positive integers a1, a2, . . . , an; a positive integer t.
Question: Does some subset of the ai’s add up to t? (You can use each ai at most once.)

(Hint: Look at subproblems of the form “does a subset of {a1, a2, . . . , ai} add up to s?”)
6.23. A mission-critical production system has n stages that have to be performed sequentially; stage

i is performed by machine Mi. Each machine Mi has a probability ri of functioning reliably and
a probability 1 − ri of failing (and the failures are independent). Therefore, if we implement
each stage with a single machine, the probability that the whole system works is r1 · r2 · · · rn.
To improve this probability we add redundancy, by having mi copies of the machine Mi that
performs stage i. The probability that all mi copies fail simultaneously is only (1 − ri)mi , so the
probability that stage i is completed correctly is 1− (1− ri)mi and the probability that the whole
system works is ∏n

i=1(1 − (1 − ri)mi). Each machineMi has a cost ci, and there is a total budget
B to buy machines. (Assume that B and ci are positive integers.)
Given the probabilities r1, . . . , rn, the costs c1, . . . , cn, and the budget B, find the redundancies
m1, . . . , mn that are within the available budget and that maximize the probability that the
system works correctly.

6.24. Time and space complexity of dynamic programming. Our dynamic programming algorithm for
computing the edit distance between strings of length m and n creates a table of size n × m and
therefore needs O(mn) time and space. In practice, it will run out of space long before it runs out
of time. How can this space requirement be reduced?

Solution: We use dynamic programming. Root the tree at some arbitrary node r. For
a node v let Tv be the subtree rooted at v. We also use C(v) to denote the children of
v and G(v) to denote the grandchildren of v.

Let MinVC(v) be the minimum weight vertex cover for the tree Tv . We make the
following observations.
(a) MinVC(v) = 0 if v is a leaf.
(b) Suppose v is not a leaf. Consider an optimal vertex cover A for Tv .

• If v is in A, A− {v} is an optimal vertex cover for the forest consisting of Tu,
for all u ∈ C(v). Since the trees in this forest are disjoint, (A−{v})∩ Tu is an
optimal vertex cover for Tu and thus the cost of A is w(v)+

∑

u∈C(v)MinVC(u).
• If v is not in A, all of v’s children are in A, since each edge (v, u) is

covered by A. Thus A− C(v) is an optimal vertex cover for the forest
consisting of Tu, for all x ∈ G(v). Since the trees in this forest are disjoint,
(A− C(v))∩ Tx is an optimal vertex cover for Tx and thus the cost of A is
∑

u∈C(v)w(u) +
∑

x∈G(v)MinVC(x).

Therefore we have the following recurrence

MinVC(v) =











0 v is a leaf

min

¨

w(v) +
∑

u∈C(v)MinVC(u),
∑

u∈C(v)w(u) +
∑

x∈G(v)MinVC(x)

«

otherwise

The above recurrence can be used to compute MinVC(r) via memoization. Number
of subproblems is n. Each subproblem can be computed in O(n) time from previous
subproblems which leads to an O(n2) time algorithm. However, just as we argued
with the dynamic programming for max weight independent set in a tree, one can
reduce the time to O(n). Space requirement is also O(n) since there are only n
subproblems. �

Solution: We saw in lecture on reductions that for any graph G = (V, E), S is a vertex
cover iff V \ S is an independent set. Thus, one can find a min-weight vertex cover
in G by finding a max-weight independent set in G and taking its complement. We
already saw an algorithm for finding a max-weight independent set in a tree via

1

CS/ECE 374 Lab 8½ Spring 2021

dynamic programming and hence we can use that to compute a min-weight vertex
cover in a tree. It is therefore not surprising that the above dynamic programming
solution looks quite similar to the one for max-weight independent set in a tree. �

Solution: The solution for maximum weight independent set in lecture, and for
minimum weight vertex cover that we described above, are based on a simple recursive
approach that considers two cases based on whether to include the root or not. In
more complex problems it is necessary to introduce an additional parameter that
allows a clean decomposition of the problem into subproblems. Here we outline such
a solution for the minimum weight vertex cover problem in a tree.

We assume that the tree T is rooted and let Tu denote the subtree of T rooted at a
given node u. For u ∈ V and b ∈ {0, 1} we define MinVC(u, b) as follows. MinVC(u, 0)
denotes the weight of a min-weight vertex cover of Tu. MinVC(u, 1) denotes the
weigth of a min-weight vertex cover of Tu among all vertex covers that include u.

We give a recursive definition of MinVC(u, b). The base cases are when u is a leaf,
in which case the minimum-weight vertex cover is 0 if b = 0 and w(u) if b = 1. For
the recursive case, if we have to include u in the solution, then we are not required to
include u’s children, but if b = 0 and we decide to not include u in the solution, then
we are required to include all of u’s children. Let C(u) denote the set of u’s children
in the tree. We have

MinVC(u, b) =



























0 if u is a leaf and b = 0

w(u) if u is a leaf and b = 1

w(u) +
∑

v∈C(u)MinVC(v, 0) if b = 1

min

¨

w(u) +
∑

v∈C(u)MinVC(v, 0),
∑

v∈C(u)MinVC(v, 1)

«

otherwise.

Note that the introduction of the parameter b meant that MinVC(u, b) relied only
on values at the children of u. Finally, the solution can be computed by calling
MinVC(r, 0).

Now, the memoization data structure will be a 2d-array of size 2n, since there are
n vertices but b can only take two values. Suppose V C is an array that, at position
V C[u, b] stores the value MinVC(u, b). Like before, MinVC(u, b) depends only on
values of MinVC for vertices that are in the subtree Tu, and thus a correct evaluation
order will be an ordering generated by a post-order traversal of the tree. We can
fill in the array V C in this ordering with a simple for-loop. The running time of
the algorithm can be shown to be O(n), by noticing that every element of the array
participates in one assignment and one addition, so 2 operations, and we have 2n
elements in the array in total, for a total bound of 4n on the number of operations,
which is O(n). �

2

CS/ECE 374 Lab 8½ Spring 2021

2. A basic arithmetic expression is composed of characters from the set {1,+,×} and parenthe-
ses. Almost every integer can be represented by more than one basic arithmetic expression. For
example, all of the following basic arithmetic expression represent the integer 14:

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1

((1+ 1)× (1+ 1+ 1+ 1+ 1)) + ((1+ 1)× (1+ 1))
(1+ 1)× (1+ 1+ 1+ 1+ 1+ 1+ 1)
(1+ 1)× (((1+ 1+ 1)× (1+ 1)) + 1)

Describe and analyze an algorithm to compute, given an integer n as input, the minimum number
of 1’s in a basic arithmetic expression whose value is equal to n. The number of parentheses
doesn’t matter, just the number of 1’s. For example, when n= 14, your algorithm should return 8,
for the final expression above. The running time of your algorithm should be bounded by a small
polynomial function of n.

Solution: LetMin1s(n) denote the minimum number of 1s in a basic arithmetic expression
with value n. This function obeys the following recurrence:

Min1s(n) =























1 if n= 1

min















min
�

Min1s(m) +Min1s(n−m)
�

� 1≤ m≤ n/2
	

min

¨

Min1s(m) +Min1s(n/m)

�

�

�

�

�

1≤ m≤
p

n and
n/m is an integer

«















otherwise

Here are the first twenty values of this function:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 2 3 4 5 5 6 6 6 7 8 7 8 8 8 8 9 8 9 9

We can memoize this function into a one-dimensional array Min1s[1 .. n]. Each entry
Min1s[i] depends on all entries Min1s[j] with j < i, so we can fill the array in increasing
index order.

MinOnes(n):
Min1s[1]← 1
for i← 2 to n

Min1s[i]← i 〈〈Easy upper bound〉〉
for m← 1 to i/2

Min1s[i]←min
�

Min1s[i], Min1s[m] +Min1s[i −m]
	

if bi/mc ·m= i
Min1s[i]←min

�

Min1s[i], Min1s[m] +Min1s[i/m]
	

return Min1s[n]

The resulting algorithm runs in O(n2) time.
�

3

CS/ECE 374 Lab 8½ Spring 2021

To think about later:

2. Suppose you are given a sequence of integers separated by + and − signs; for example:

1+ 3− 2− 5+ 1− 6+ 7

You can change the value of this expression by adding parentheses in different places. For
example:

1+ 3− 2− 5+ 1− 6+ 7= −1

(1+ 3− (2− 5)) + (1− 6) + 7= 9

(1+ (3− 2))− (5+ 1)− (6+ 7) = −17

Describe and analyze an algorithm to compute, given a list of integers separated by + and −
signs, the maximum possible value the expression can take by adding parentheses. Parentheses
must be used only to group additions and subtractions; in particular, do not use them to create
implicit multiplication as in 1+ 3(−2)(−5) + 1− 6+ 7= 33.

Solution: Suppose the input consists of an array X [0 .. 2n], where X [i] is an integer for
every even index i and X [i] ∈ {+,-} for every odd index i.

Let Max(i, k) and Min(i, k) respectively denote the maximum and minimum values
obtainable by parenthesizing the subexpression X [2i .. 2k]. We need to compute Max(0, n).
These functions obey the following mutual recurrences:

Max(i, k) =



































X [2i] if i = k

max























max

¨

Max(i, j) +Max(j + 1, k)

�

�

�

�

�

i ≤ j < k

X [2 j + 1] = +

«

max

¨

Max(i, j)−Min(j + 1, k)

�

�

�

�

�

i ≤ j < k

X [2 j + 1] = -

«























otherwise

Min(i, k) =



































X [2i] if i = k

min























max

¨

Min(i, j) +Min(j + 1, k)

�

�

�

�

�

i ≤ j < k

X [2 j + 1] = +

«

max

¨

Min(i, j)−Max(j + 1, k)

�

�

�

�

�

i ≤ j < k

X [2 j + 1] = -

«























otherwise

We can memoize each of these functions into a two-dimensional array. Each entry
Mxx[i, k] depends on earlier entries in the same row of the same array, and later entries
in the same column in both arrays. Thus, we can fill both arrays simultaneously, by
considering rows from bottom to top in the outer loop, and considering each row from left
to right in the inner loop.

The resulting algorithm (shown on the next page) runs in O(n3) time.

4

CS/ECE 374 Lab 8½ Spring 2021

MaxValue(X [0 .. 2n]):
for i← n down to 0

Max[i, i]← X [2k]
Min[i, i]← X [2k]
for k← i + 1 to n

localMax←−∞
localMin←∞
for j← i to k− 1

if X [2 j + 1] = +
localMax←max{localMax, Max[i, j] +Max[j + 1, k]}
localMin←min{localMin, Min[i, j] +Min[j + 1, k]}

else
localMax←max{localMax, Max[i, j]−Min[j + 1, k]}
localMin←min{localMin, Min[i, j]−Max[j + 1, k]}

Max[i, k]← localMax
Min[i, k]← localMin

return Max[0, n]

�

5

