
CS/ECE 374 Lab 8 Solutions Spring 2021

Some of your colleagues have decided to enter a sledding competition. In this competition, the
contestants start at the top of a hill and race down on their sleds. This hill is filled with a number of
ramps. Whenever a contestant reaches a ramp while on the ground, they can either use that ramp to
jump through the air, possibly flying over one or more ramps, or sled past that ramp and stay on the
ground. Obviously, if someone flies over a ramp, they cannot use that ramp to extend their jump.

The rules state that whoever spends the most time in the air wins the competition. After gathering
details about the hills and ramps and doing some practice, your colleagues have turned to you to help
them figure out how to get the first prize trophies in a few different categories.

1. Suppose you are given a pair of arrays Ramp[1 .. n] and Length[1 .. n], where Ramp[i] is the
distance from the top of the hill to the ith ramp, and Length[i] is the distance that any sledder
who takes the ith ramp will travel through the air.

For example, consider an instance where n = 8, Ramp = [1, 5,10, 15,20, 25,40, 50] and
Length = [16, 6,1, 30,2, 3,2, 0]. Then taking the first ramp will result in landing at distance 17
from the top of the hill, which is after the fourth ramp, and then taking all the subsequent ramps
will give a total air time of 16+ 2+ 3+ 2= 23. On the other hand, if one skips the first one and
takes the second ramp and the fourth one, the total air time is 6+ 30= 36.

Describe and analyze an algorithm to determine the maximum total distance that a contestant
can spend in the air.

Solution: To simplify boundary cases, we add a sentinel value Ramp[n+ 1] =∞.
(Intuitively, we add a “ramp” at the bottom of the hill, well beyond the end of any
possible jump, and then end the race when Nancy and Erhan reach this ramp.)

For any index i, let Next(i) denote the smallest index j such that Ramp[ j] >
Ramp[i] + Length[i]. Because the array Ramp is sorted, we can compute Next(i) for
any index i in O(log n) time using binary search.

Now let MaxAir(i) denote the maximum distance that one sledder can spend in
the air, starting on the ground at the ith ramp. We need to compute MaxAir(1). This
function satisfies the following recurrence:

MaxAir(i) =







0 if i > n

max

�

MaxAir(i + 1)

Length[i] +MaxAir(Next(i))

�

otherwise

We can memoize this function into an a one-dimensional array MaxAir[1 .. n + 1],
which we can fill from right to left.

MaxAir(Ramp[1 .. n],Length[1 .. n]):
Ramp[n+ 1]←∞ 〈〈sentinel〉〉
MaxAir[n+ 1]← 0 〈〈base case〉〉
for i← n down to 1

next← BinarySearch(Ramp, Ramp[i] + Length[i])
MaxAir[i]←max{MaxAir[i + 1], Length[i] +MaxAir[next]}

return MaxAir[1]

Because of the binary search for Next(i) (here stored in the variable next), the
algorithm runs in O(n logn) time. �
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2. Your colleagues have decided to try the expert version of the competition, which states that each
contestant can use at most k jumps.

Describe and analyze an algorithm to determine the maximum total distance that a contestant
can spend in the air with at most k jumps, given the original arrays Ramp[1 .. n] and Length[1 .. n]
and the integer k as input.

Solution: As in the previous problem, add a sentinel ramp Ramp[n + 1] = ∞,
and for any index i, let Next(i) denote the smallest index j such that Ramp[ j] >
Ramp[i] + Length[i].

Now let MaxAir(i,`) denote the maximum distance any sledder can spend in the
air, starting on the ground at the ith ramp, using at most ` jumps. We need to compute
MaxAir(1, k). This function obeys the following recurrence:

MaxAir(i,`) =







0 if i > n or `= 0

max

�

MaxAir(i + 1,`)

Length[i] +MaxAir(Next(i),`− 1)

�

otherwise

We can memoize this function into a two-dimensional array MaxAir[1 .. n+ 1, 0 .. k],
which we can fill by considering rows from bottom to top in the outer loop and filling
each row in arbitrary order in the inner loop.

MaxAir(Ramp[1 .. n],Length[1 .. n], k):
Ramp[n+ 1]←∞
for `← 0 to k

MaxAir[n+ 1,`]← 0
for i← n down to 1

next← BinarySearch(Ramp, Ramp[i] + Length[i])
MaxAir[i, 0]← 0
for `← 1 to k

MaxAir[i,`]←max{MaxAir[i + 1,`], Length[i] +MaxAir[next,`− 1]}
return MaxAir[1, k]

Because we perform the binary search for Next(i) outside the inner loop, the algorithm
runs in O(n logn + nk) time. �
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3. To think about later: In the team-based expert version of the competition, sledders compete
in teams of two. Each team member is still limited to k jumps, but each team can only use each
ramp once, i.e., if a team member uses a ramp, then their teammate cannot use it.

Describe and analyze an algorithm to determine the maximum total distance that a team of
two contestants can spend in the air, with each of the two contestants taking at most k jumps (so
at most 2k jumps total), and with each ramp used at most once.

Solution: Let us give our two contestants names, say, Erhan and Nancy.
Again, add a sentinel ramp Ramp[n+ 1] =∞, and for any index i, let Next(i)

denote the smallest index j such that Ramp[ j]> Ramp[i] + Length[i].
To design a recurrence, let’s consider what could happen at the ith ramp. There

are four possibilities:
• If Erhan and Nancy are both on the ground at ramp i, we need to decide whether

Erhan should jump at ramp i, or Nancy should jump at ramp i, or neither should
jump at ramp i.

• If Erhan jumps over ramp i but Nancy does not, we need to decide whether
Nancy should jump at ramp i.

• If Nancy jumps over ramp i but Erhan does not, we need to decide whether
Erhan should jump at ramp i..

• If both Erhan and Nancy jump over ramp i, there is nothing to decide about
ramp i.

Let MaxAir2(i, j,`, m) denote the maximum time that Nancy and Erhan can spend
in the air under the following conditions.

• If i = j, then both sledders are on the ground at ramp i. In this case, at most
one of the sledders can jump at ramp i; any sledder that does not jump sleds
down to ramp i + 1.

• If i < j, then Erhan is on the ground at ramp i, and Nancy is jumping over ramp i
and will land just before ramp j. In this case, Erhan can either jump at ramp i
or sled down to ramp i + 1.

• If i < j, then Nancy is on the ground at ramp j, and Erhan is jumping over
ramp j and will land just before ramp i. In this case, Nancy can either jump at
ramp j or sled down to ramp j + 1.

• Erhan has ` jumps remaining, and Nancy has m jumps remaining.
In the second and third cases, the airtime for the sledder in the air is not included
in the total. We handle the case where both sledders are in the air over ramp i by
moving down the hill to the first landing. (Whew!)
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Formalizing our case analysis gives us the following recurrence:

MaxAir2(i, j,`, m)

=












































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























−∞ if ` < 0 or m< 0

0 if i > n and j > n

max







MaxAir2(i + 1, i + 1,`, m)
Length[i] + MaxAir2(Next(i), i + 1,`− 1, m)
Length[i] + MaxAir2(i + 1,Next(i),`, m− 1)







if i = j ≤ n

max

�

MaxAir2(i + 1, j,`, m)
Length[i] + MaxAir2(Next(i), j,`− 1, m)

�

if i < j

max

�

MaxAir2(i, j + 1,`, m)
Length[ j] + MaxAir2(i,Next( j),`− 1, m)

�

if i > j

We can memoize this function into a four-dimensional array Air[1 .. n+ 1,1 .. n+ 1,
−1 .. k,−1 .. k]. Each entry Air[i, j,`, m] depends only on entries Air[i′, j′,`′, m′]
where either i′ > i, or i′ = i and j′ > i. Thus, we can fill the array by decreasing i
in the outermost loop, decreasing j in the next loop, and considering ` and m in
arbitrary order in the inner two loops. To speed up evaluation, we precompute all
values of Next(i) at the start. The resulting algorithm runs in O(n2k2) time.
MaxAir2(Ramp[1 .. n],Length[1 .. n], k):
Ramp[n+ 1]←∞
Length[n+ 1]← 0
for i← 1 to n

Next[i]← BinarySearch(Ramp, Ramp[i] + Length[i])
for i← n+ 1 down to 1

for j← n+ 1 down to i
for `←−1 to k

for m←−1 to k
if ` < 0 or m< 0

Air[i, j,`, m]←−∞
else if i = n+ 1 and j = n+ 1

Air[i, j,`, m]← 0
else if i = j

Air[i, i,`, m]←max







Air[i + 1, i + 1,`, m]
Length[i] + Air[Next[i], i + 1,`− 1, m]
Length[i] + Air[i + 1,Next[i],`, m− 1]







else if i < j

Air[i, j,`, m]←max

�

Air[i + 1, j,`, m]
Length[i] + Air[Next[i], j,`− 1, m]

�

else 〈〈i > j〉〉

Air[i, j,`, m]←max

�

Air[i, j + 1,`, m]
Length[i] + Air[i,Next[ j],`, m− 1]

�

return Air[1, 1, k, k]

�
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