CS/ECE 374 Lab 7 Solutions Spring 2021

Describe recursive backtracking algorithms for the following problems. Don’t worry about running times.

1. Given an array A[1..n] of integers, compute the length of a longest increasing subsequence.

Solution (#1 of 00): Add a sentinel value A[0] = —oo. Let LIS(i, j) denote the length of the
longest increasing subsequence of A[j..n] where every element is larger than A[i]. This function
obeys the following recurrence:

0 ifj>n
LIS(i,j) = { LIS(i, j + 1) if j <nand A[i] > A[j]
max {LIS(i,j +1),1+LIS(j,j+ 1)} otherwise

We need to compute LIS(0, 1). [|

Solution (#2 of 00): Add a sentinel value A[n + 1] = —o0. Let LIS(i, j) denote the length of the
longest increasing subsequence of A[1.. j] where every element is smaller than A[j]. This function
obeys the following recurrence:

0 ifi<1
LIS(i,j) = { LIS(i— 1, j) ifi >1andAli] = A[j]
max {LIS(i—1,j),1+LIS(i—1,i)} otherwise

We need to compute LIS(n,n + 1). [|

Solution (#3 of 00): Let LIS(i) denote the length of the longest increasing subsequence of A[i .. n]
that begins with A[i]. This function obeys the following recurrence:

LIS(D) 1 if A[j]<A[i]forall j >i
1) =
1 + max {LIS(j) | j>iandA[j] >A[i]} otherwise

(The first case is actually redundant if we define max @ = 0.) We need to compute max; LIS(i). W

Solution (#4 of 00): Add a sentinel value A[0] = —oo. Let LIS(i) denote the length of the
longest increasing subsequence of A[i .. n] that begins with A[i]. This function obeys the following
recurrence:

LIS(i) 1 if A[j]<A[i]forall j >i
1) =
1+ max {LIS(j) | j>iandA[j] >A[i]} otherwise

(The first case is actually redundant if we define max@ = 0.) We need to compute LIS(0) — 1; the
—1 removes the sentinel —oo from the start of the subsequence. |

Solution (#5 of 00): Add sentinel values A{l0] = —oo and A[n + 1] = 0o. Let LIS(j) denote the
length of the longest increasing subsequence of A[1..j] that ends with A[j]. This function obeys
the following recurrence:

sy {1 ifj=0
7= 1 +maX{LIS(i) | i <jandA[i] <A[j]} otherwise

We need to compute LIS(n + 1) — 2; the —2 removes the sentinels —oo and oo from the subse-
quence. [|

CS/ECE 374 Lab 7 Solutions Spring 2021

2. Given an array A[1..n] of integers, compute the length of a longest decreasing subsequence.

Solution (one of many): Add a sentinel value A[0] = oco. Let LDS(i, j) denote the length of the
longest decreasing subsequence of A[j .. n] where every element is smaller than A[i]. This function
obeys the following recurrence:

0 ifj>n
LDS(i,j) = { LDS(i,j + 1) if j <nand A[i] <A[j]
max {LDS(i,j+1),1+LIS(j,j+ 1)} otherwise

We need to compute LDS(0, 1). [

Solution (clever): Multiply every element of A by —1, and then compute the length of the longest
increasing subsequence using the algorithm from problem 1. u

CS/ECE 374 Lab 7 Solutions Spring 2021

3. Given an array A[1..n] of integers, compute the length of a longest alternating subsequence.

Solution (one of many): We define two functions:

* Let LAS™(i, j) denote the length of the longest alternating subsequence of A[j ..n] whose first
element (if any) is larger than A[i] and whose second element (if any) is smaller than its first.

* Let LAS (i, j) denote the length of the longest alternating subsequence of A[j..n] whose first
element (if any) is smaller than A[i] and whose second element (if any) is larger than its first.

These two functions satisfy the following mutual recurrences:

0 ifj>n
LAS*(i,j) = { LAST(i,j + 1) if j <nandA[j]<A[i]
max {LAS*(i,j +1),1+LAS(j,j+ 1)} otherwise

0 ifj>n
LAS~(i,j) =4 LAS(i,j + 1) if j<nandA[j]=>A[i]
max {LAS™(i,j +1),1 +LAS™(j,j+ 1)} otherwise

To simplify computation, we consider two different sentinel values A[0]. First we set A[0] = —00
and let {* = LAS"(0,1). Then we set Al0] = + o0 and let £~ = LAS(0, 1). Finally, the length of
the longest alternating subsequence of A is max{{*,¢~}. [|

Solution (one of many): We define two functions:

* Let LAS*(i) denote the length of the longest alternating subsequence of A[i .. n] that starts
with A[i] and whose second element (if any) is larger than A[i].

* Let LAS™(i) denote the length of the longest alternating subsequence of A[i .. n] that starts
with A[i] and whose second element (if any) is smaller than A[i].

These two functions satisfy the following mutual recurrences:

iy 1 ifA[j]<A[i]forall j>i
LAS™(i) = I . . .
1 + max {LAS () | j>iand A[j] >A[l]} otherwise
LAS—(i) = 1 o | . ifA[j]‘ZA[i] forall j >1i
1+ max {LAS*(]) | j>iand A[j] <A[l]} otherwise

We need to compute max; max{LAS™ (i), LAS~(i)}. []

CS/ECE 374 Lab 7 Solutions Spring 2021

To think about later:

4. Given an array A[1..n] of integers, compute the length of a longest convex subsequence of A.

Solution: Let LCS(i, j) denote the length of the longest convex subsequence of A[i..n] whose first
two elements are A[i] and A[j]. This function obeys the following recurrence:

LCS(i,j) = 1+ max{LCS(j,k) | j < k < n and A[i]+A[k] > 2A[j1}

Here we define max @ = 0; this gives us a working base case. The length of the longest convex
subsequence is max <;j<, LCS(i, j)-. [|

Solution (with sentinels): Assume without loss of generality that A[i] > O for all i. (Otherwise,
we can add |m| to each A[i], where m is the smallest element of A[1..n].) Add two sentinel values
A[0]=2M +1 and A[—1] = 4M + 3, where M is the largest element of A[1..n].

Let LCS(i, j) denote the length of the longest convex subsequence of A[i..n] whose first two
elements are A[i] and A[j]. This function obeys the following recurrence:

LCS(i,j) = 1+ max{LCS(j,k) | j < k < n and A[i]+A[k] > 24[j1}

Here we define max @ = 0; this gives us a working base case.

Finally, we claim that the length of the longest convex subsequence of A[1..n]is LCS(—1,0)—2.
Proof: First, consider any convex subsequence S of A[1..n], and suppose its first element is A[i].
Then we have A[—1]—2A[0]+A[i]=4M +3—2(2M + 1) + A[i] = A[i] + 1 > 0, which implies
that A[—1]-A[0] - S is a convex subsequence of A[—1..n]. So the longest convex subsequence of
A[1..n] has length at most LCS(—1,0) — 2.

On the other hand, removing A[—1] and A[0] from any convex subsequence of A[—1..n] laves
a convex subsequence of A[1..n]. So the longest subsequence of A[1..n] has length at least
LCS(—1,0)—2. O

CS/ECE 374 Lab 7 Solutions Spring 2021

5. Given an array A[1..n], compute the length of a longest palindrome subsequence of A.

Solution (naive): Let LPS(i, j) denote the length of the longest palindrome subsequence of A[i .. j].
This function obeys the following recurrence:

(0 ifi>j
1 ifi=j
LPS(i+1,j
max{ (l. . J) } ifi <jand Ali] #A[j]
LPS(i,) = | LPS(i,j—1)

2+LPS(i+1,j—1)
max LPS(i+1,j) otherwise
LPS(i,j—1)

We need to compute LPS(1, n). [

Solution (with greedy optimization): Let LPS(i, j) denote the length of the longest palindrome
subsequence of A[i .. j]. Before stating a recurrence for this function, we make the following useful
observation.!

Claim 1. Ifi < j and A[i] =A[j], then LPS(i, j) = 2 +LPS(i + 1, j — 1).

Proof: Suppose i < j and A[i] = A[j]. Fix an arbitrary longest palindrome subsequence S of
Ali..j]. There are four cases to consider.

* If S uses neither A[i] nor A[j], then A[i] * S * A[j] is a palindrome subsequence of A[i .. j]
that is longer than S, which is impossible.

* Suppose S uses A[i] but not A[j]. Let A[k] be the last element of S. If k =i, then A[i] * A[j]
is a palindrome subsequence of A[i .. j] that is longer than S, which is impossible. Otherwise,
replacing A[k] with A[j] gives us a palindrome subsequence of A[i .. j] with the same length
as S that uses both A[i] and A[j].

* Suppose S uses A[j] but not A[i]. Let A[h] be the first element of S. If h = j, then A[i] * A[j]
is a palindrome subsequence of A[i .. j] that is longer than S, which is impossible. Otherwise,
replacing A[h] with A[i] gives us a palindrome subsequence of A[i .. j] with the same length
as S that uses both A[i] and A[j].

* Finally, S might include both A[i] and A[j].

In all cases, we find either a contradiction or a longest palindrome subsequence of A[i .. j] that
uses both A[i] and A[j]. O

Claim 1 implies that the function LPS satisfies the following recurrence:

0 ifi>j
ifi=j
LPS(i,) = o NN
maX{LPS(l +1,j), LPS(i,j — 1)} ifi <jandA[i]#A[j]
24+LPS(i+1,j—1) otherwise
We need to compute LPS(1, n). [

!And yes, optimizations like this require a proof of correctness, both in homework and on exams. Premature optimization is
the root of all evil.

