CS/ECE 374 Lab 6 Spring 2021

Here are several problems that are easy to solve in O(n) time, essentially by brute force. Your task is to
design algorithms for these problems that are significantly faster using binary search related ideas.

1. Suppose we are given an array A[1..n] of n distinct integers, which could be positive, negative, or
zero, sorted in increasing order so that A[1] < A[2] < --- < A[n].

(a) Describe a fast algorithm that either computes an index i such that A[i] = i or correctly
reports that no such index exists.

(b) Suppose we know in advance that A[1] > 0. Describe an even faster algorithm that either
computes an index i such that A[i] =i or correctly reports that no such index exists. [Hint:
This is really easy:]

2. Suppose we are given an array A[1..n] such that A[1] = A[2] and A[n— 1] < A[n]. We say that
an element A[x] is a local minimum if both A[x —1] > A[x] and A[x] < A[x + 1]. For example,
there are exactly six local minima in the following array:

[o717]2]1]s]7][5]4]7|3]3][4][8]6]9]
A A A A A A

Describe and analyze a fast algorithm that returns the index of one local minimum. For example,
given the array above, your algorithm could return the integer 9, because A[9] is a local minimum.
[Hint: With the given boundary conditions, any array must contain at least one local minimum.
Why?]

3. Suppose you are given two sorted arrays A[1..n] and B[1..n] containing distinct integers. Describe
a fast algorithm to find the median (meaning the nth smallest element) of the union AU B. For
example, given the input

Al1..81=[0,1,6,9,12,13,18,20] B[1..8]=[2,4,5,8,17,19,21,23]

your algorithm should return the integer 9. [Hint: What can you learn by comparing one element
of A with one element of B?]

4. Suppose you have an algorithm that given as input a directed graph G = (V,E), nodes s,t € V,
and an integer k, outputs whether there is path from s to t in G with at most k edges. Thus the
algorithm is solving a decision problem. Now you want to use this decision algorithm as a black
box to find the length of the shortest path from s to t, which is an optimization problem. How do
you reduce the optimization problem to the decision problem? What is an upper bound on the
number of calls to the decision problem that your optimization algorithm makes? Assume n is the
number of nodes in G. Now suppose the graphs has non-negative integer edge lengths with U
being the largest edge length and L > 1 being the smallest edge length. Now how many calls will
your algorithm take? Is it polynomial in the input length?

To think about later:

CS/ECE 374 Lab 6 Spring 2021

5. Now suppose you are given two sorted arrays A[1..m] and B[1..n] and an integer k. Describe a
fast algorithm to find the kth smallest element in the union AU B. For example, given the input

Al1..8]=10,1,6,9,12,13,18,20] B[1..5]=[2,5,7,17,19] k=6
your algorithm should return the integer 7.

6. Suppose you have an algorithm that given as input a directed graph G = (V,E), nodes s,t € V,
and an integer k, outputs whether the number of distinct shortest paths from s to t is at least
k. Describe an algorithm that counts the number of distinct shortest s-t paths in G. Does your
algorithm run in polynomial time?

