Here are several problems that are easy to solve in \(O(n) \) time, essentially by brute force. Your task is to design algorithms for these problems that are significantly faster using binary search related ideas.

1. Suppose we are given an array \(A[1..n] \) of \(n \) distinct integers, which could be positive, negative, or zero, sorted in increasing order so that \(A[1] < A[2] < \cdots < A[n] \).

 (a) Describe a fast algorithm that either computes an index \(i \) such that \(A[i] = i \) or correctly reports that no such index exists.

 Solution: Suppose we define a second array \(B[1..n] \) by setting \(B[i] = A[i] - i \) for all \(i \). For every index \(i \) we have
 \[
 \]
so this new array is sorted in increasing order. Clearly, \(A[i] = i \) if and only if \(B[i] = 0 \). So we can find an index \(i \) such that \(A[i] = i \) by performing a binary search in \(B \). We don’t actually need to compute \(B \) in advance; instead, whenever the binary search needs to access some value \(B[i] \), we can just compute \(A[i] - i \) on the fly instead!

 Here are two formulations of the resulting algorithm, first recursive (keeping the array \(A \) as a global variable), and second iterative.

   ```plaintext
   (Return any index \( i \) such that \( \ell \leq i \leq r \) and \( A[i] = i \))
   FINDMATCH(\( \ell \), \( r \)):
   if \( \ell > r \)
       return NONE
   mid ← (\( \ell + r \))/2
   if \( A[mid] = mid \) \( \langle B[mid] = 0 \rangle \)
       return mid
   else if \( A[mid] < mid \) \( \langle B[mid] < 0 \rangle \)
       return FINDMATCH(mid + 1, \( r \))
   else
       return FINDMATCH(\( \ell \), mid - 1)
   
   FINDMATCH(\( A[1..n] \)):
   hi ← \( n \)
   lo ← 1
   while lo \( \leq \) hi
       mid ← (lo + hi)/2
       if \( A[mid] = mid \) \( \langle B[mid] = 0 \rangle \)
           return mid
       else if \( A[mid] < mid \) \( \langle B[mid] < 0 \rangle \)
           lo ← mid + 1
       else
           hi ← mid - 1
   return NONE
   ```

 In both formulations, the algorithm is binary search, so it runs in \(O(\log n) \) time.
(b) Suppose we know in advance that \(A[1] > 0 \). Describe an even faster algorithm that either computes an index \(i \) such that \(A[i] = i \) or correctly reports that no such index exists. \([\text{Hint: This is really easy.}]\)

Solution: The following algorithm solves this problem in \(O(1) \) time:

```
FINDMATCHPOS(A[1..n]):
  if A[1] = 1
    return 1
  else
    return NONE
```

Again, the array \(B[1..n] \) defined by setting \(B[i] = A[i] - i \) is sorted in increasing order. It follows that if \(A[1] > 1 \) (that is, \(B[1] > 0 \)), then \(A[i] > i \) (that is, \(B[i] > 0 \)) for every index \(i \). \(A[1] \) cannot be less than 1.

\[\square \]
2. Suppose we are given an array $A[1..n]$ such that $A[1] \geq A[2]$ and $A[n-1] \leq A[n]$. We say that an element $A[x]$ is a local minimum if both $A[x-1] \geq A[x]$ and $A[x] \leq A[x+1]$. For example, there are exactly six local minima in the following array:

$$
\begin{array}{cccccccccccc}
9 & 7 & 7 & 2 & 1 & 3 & 7 & 5 & 4 & 7 & 3 & 3 & 4 & 8 & 6 & 9
\end{array}
$$

Describe and analyze a fast algorithm that returns the index of one local minimum. For example, given the array above, your algorithm could return the integer 9, because $A[9]$ is a local minimum.

Hint: With the given boundary conditions, any array must contain at least one local minimum. Why?

Solution: The following algorithm solves this problem in $O(\log n)$ time:

```plaintext
LOCALMIN(A[1..n]) :
    if $n < 100$
        find the smallest element in A by brute force
    $m \leftarrow \lfloor n/2 \rfloor$
    if $A[m] < A[m + 1]$
        return LOCALMIN(A[1..m + 1])
    else
        return LOCALMIN(A[m..n])
```

If n is less than 100, then a brute-force search runs in $O(1)$ time. There’s nothing special about 100 here; any other constant will do.

Otherwise, if $A[n/2] < A[n/2 + 1]$, the subarray $A[1..n/2 + 1]$ satisfies the precise boundary conditions of the original problem, so the recursion fairy will find local minimum inside that subarray.

Finally, if $A[n/2] > A[n/2 + 1]$, the subarray $A[n/2..n]$ satisfies the precise boundary conditions of the original problem, so the recursion fairy will find local minimum inside that subarray.

The running time satisfies the recurrence $T(n) \leq T(\lfloor n/2 \rfloor + 1) + O(1)$. Except for the +1 and the ceiling in the recursive argument, which we can ignore, this is the binary search recurrence, whose solution is $T(n) = O(\log n)$.

Alternatively, we can observe that $\lfloor n/2 \rfloor + 1 < 2n/3$ when $n \geq 100$, and therefore $T(n) \leq T(2n/3) + O(1)$, which implies $T(n) = O(\log_{3/2} n) = O(\log n)$. ■
Suppose you are given two sorted arrays $A[1..n]$ and $B[1..n]$ containing distinct integers. Describe a fast algorithm to find the median (meaning the nth smallest element) of the union $A \cup B$. For example, given the input

$$A[1..8] = [0, 1, 6, 9, 12, 13, 18, 20] \quad B[1..8] = [2, 4, 5, 8, 17, 19, 21, 23]$$

your algorithm should return the integer 9. [Hint: What can you learn by comparing one element of A with one element of B?]

Solution: The following algorithm solves this problem in $O(\log n)$ time:

```python
def MEDIAN(A[1..n], B[1..n]):
    if n < 1010:
        use brute force
    else if A[n/2] > B[n/2]:
        return MEDIAN(A[1..n/2], B[n/2+1..n])
    else:
        return MEDIAN(A[n/2+1..n], B[1..n/2])
```

Suppose $A[n/2] > B[n/2]$. Then $A[n/2 + 1]$ is larger than all n elements in $A[1..n/2] \cup B[1..n/2]$, and therefore larger than the median of $A \cup B$, so we can discard the upper half of A. Similarly, $B[n/2 − 1]$ is smaller than all $n + 1$ elements of $A[n/2..n] \cup B[n/2+1..n]$, and therefore smaller than the median of $A \cup B$, so we can discard the lower half of B. Because we discard the same number of elements from each array, the median of the remaining subarrays is the median of the original $A \cup B$. ■
4. Suppose you have an algorithm that given as input a directed graph \(G = (V, E) \), nodes \(s, t \in V \), and an integer \(k \), outputs whether there is path from \(s \) to \(t \) in \(G \) with at most \(k \) edges. Thus the algorithm is solving a decision problem. Now you want to use this decision algorithm as a black box to find the length of the shortest path from \(s \) to \(t \), which is an optimization problem. How do you reduce the optimization problem to the decision problem? What is an upper bound on the number of calls to the decision problem that your optimization algorithm makes? Assume \(n \) is the number of nodes in \(G \). Now suppose the graphs has non-negative integer edge lengths with \(U \) being the largest edge length and \(L \geq 1 \) being the smallest edge length. Now how many calls will your algorithm take? Is it polynomial in the input length?

Solution: This is a solution sketch. We will assume \(s \neq t \) otherwise the shortest path length is 0. The shortest path length is then an integer in the range 1 to \(n - 1 \) since the graph is unweighted. Binary search will require \(O(\log n) \) calls to the decision problem. A naive strategy of asking each value of \(k \) in the range requires \(n \) calls. If the graph is weighted the shortest path length can be at most \((n - 1)U\) and at least \(L \). Hence binary search will require \(O(\log nU/L) \) calls which is at most \(O(\log n + \log U) \) since \(L \geq 1 \). Note that writing \(U \) in binary take \(O(\log U) \) bits so the number of calls is polynomial in the input length. Note that if one uses naive strategy then the number of calls can be \(\Omega(nU) \) which is not necessarily polynomial in the input if \(U \) is very large, say \(2^n \). ■

To think about later:

5. Now suppose you are given two sorted arrays \(A[1..m] \) and \(B[1..n] \) and an integer \(k \). Describe a fast algorithm to find the \(k \)th smallest element in the union \(A \cup B \). For example, given the input

\[
A[1..8] = [0, 1, 6, 9, 12, 13, 18, 20] \quad B[1..5] = [2, 5, 7, 17, 19] \quad k = 6
\]

your algorithm should return the integer 7.

Solution: The following algorithm solves this problem in \(O(\log \min\{k, m+n-k\}) = O(\log (m+n)) \) time:

```c
SELECT(A[1..m], B[1..n], k):
    if \( k < (m+n)/2 \)
        return MEDIAN(A[1..k], B[1..k])
    else
        return MEDIAN(A[k-n..m], B[k-m..n])
```

Here, \(\text{MEDIAN} \) is the algorithm from problem 3 with one minor tweak. If \(\text{MEDIAN} \) wants an entry in either \(A \) or \(B \) that is outside the bounds of the original arrays, it uses the value \(-\infty\) if the index is too low, or \(\infty \) if the index is too high, instead of creating a core dump ■

6. Suppose you have an algorithm that given as input a directed graph \(G = (V, E) \), nodes \(s, t \in V \), and an integer \(k \), outputs whether the number of distinct shortest paths from \(s \) to \(t \) is at least \(k \). Describe an algorithm that counts the number of distinct shortest \(s\text{-}t \) paths in \(G \). Does your algorithm run in polynomial time?

Solution: This is a solution sketch. We do binary search again but now we need to upper bound the number of distinct shortest paths from \(s \) to \(t \) in \(G \). It is not hard to construct examples of graphs where the number is at least \(2^{n/2} \) where \(n \) is the number of nodes. A crude upper bound is
m^n where m is the number of edges and n is the number of nodes. Why? Assuming this upper bound binary search will take $O(m \log n)$ calls and this is polynomial in the input length. Note that writing down the answer may take $O(m \log n)$ bits but that is also polynomial in the input length.