CS/ECE 374 Lab 6 Solutions Spring 2021

Here are several problems that are easy to solve in O(n) time, essentially by brute force. Your task is to
design algorithms for these problems that are significantly faster using binary search related ideas.

1. Suppose we are given an array A[1..n] of n distinct integers, which could be positive, negative, or
zero, sorted in increasing order so that A[1] < A[2] < --- < A[n].

(a) Describe a fast algorithm that either computes an index i such that A[i] = i or correctly
reports that no such index exists.

Solution: Suppose we define a second array B[1..n] by setting B[i] = A[i] —1i for all i. For
every index i we have
Bli] = Ali]l—i < A[i+1]—-1)—i = Ali+1]—(i+1) = B[i+1],

so this new array is sorted in increasing order. Clearly, A[i] =i if and only if B[i] = 0. So we
can find an index i such that A[i] = i by performing a binary search in B. We don’t actually
need to compute B in advance; instead, whenever the binary search needs to access some
value B[i], we can just compute A[i]—i on the fly instead!

Here are two formulations of the resulting algorithm, first recursive (keeping the array A
as a global variable), and second iterative.

((Return any index i such that £ <i <r and Ali] =1i))
FINDMATCH({, r):
ifl>r
return NONE

mid — (£ +1)/2

if Almid] = mid {(B[mid] = 0))
return mid

else if Almid] < mid {(B[mid] < 0))
return FINDMATCH(mid + 1, 1)

else {(B[mid] > 0))

return FINDMATCH({, mid — 1)

FINDMATCH(A[1..n]):
hi<—n
lo—1
while lo < hi
mid « (lo + hi)/2
if A[mid] = mid ((B[mid] = 0))
return mid
else if Almid] < mid {{(B[mid] < 0))
lo—mid+1
else {(B[mid] > 0))
hi «—mid—1

return NONE

In both formulations, the algorithm is binary search, so it runs in O(logn) time. [|

CS/ECE 374 Lab 6 Solutions Spring 2021

(b) Suppose we know in advance that A[1] > 0. Describe an even faster algorithm that either
computes an index i such that A[i] =i or correctly reports that no such index exists. [Hint:
This is really easy:]

Solution: The following algorithm solves this problem in O(1) time:

FINDMATCHPOS(A[1..n]):
ifA[1]=1
return 1
else
return NONE

Again, the array B[1..n] defined by setting B[i] = A[i] —i is sorted in increasing order. It
follows that if A{1] > 1 (that is, B[1] > 0), then A[i] > i (that is, B[i] > 0) for every index i.
A[1] cannot be less than 1. [

CS/ECE 374 Lab 6 Solutions Spring 2021

2. Suppose we are given an array A[1..n] such that A[1] > A[2] and A[n— 1] < A[n]. We say that
an element Al x] is a local minimum if both A[x —1] > A[x] and A[x] < A[x + 1]. For example,
there are exactly six local minima in the following array:

P72 31757 [3 5 4 s 6]o]

Describe and analyze a fast algorithm that returns the index of one local minimum. For example,
given the array above, your algorithm could return the integer 9, because A[9] is a local minimum.
[Hint: With the given boundary conditions, any array must contain at least one local minimum.
Why?]

Solution: The following algorithm solves this problem in O(logn) time:

LocALMIN(A[1..n]):
ifn <100
find the smallest element in A by brute force
m e« |n/2]
if Alm] <A[lm+1]
return LOCALMIN(A[1..m + 1])
else
return LOCALMIN(A[m .. n]))

If n is less than 100, then a brute-force search runs in O(1) time. There’s nothing special about
100 here; any other constant will do.

Otherwise, if A[n/2] < A[n/2 + 1], the subarray A[1..n/2 + 1] satisfies the precise boundary
conditions of the original problem, so the recursion fairy will find local minimum inside that
subarray.

Finally, if Aln/2] > A[n/2+1], the subarray A[n/2..n] satisfies the precise boundary conditions
of the original problem, so the recursion fairy will find local minimum inside that subarray.

The running time satisfies the recurrence T(n) < T(Jn/2]+ 1) + O(1). Except for the +1 and
the ceiling in the recursive argument, which we can ignore, this is the binary search recurrence,
whose solution is T(n) = O(logn).

Alternatively, we can observe that [n/2]+ 1 < 2n/3 when n > 100, and therefore T(n) <
T(2n/3)+ O(1), which implies T(n) = O(logz,, n) = O(logn). [|

CS/ECE 374 Lab 6 Solutions Spring 2021

3. Suppose you are given two sorted arrays A[1..n] and B[1..n] containing distinct integers. Describe
a fast algorithm to find the median (meaning the nth smallest element) of the union AU B. For
example, given the input

Al1..81=[0,1,6,9,12,13,18,20] B[1..8]=[2,4,5,8,17,19,21,23]

your algorithm should return the integer 9. [Hint: What can you learn by comparing one element
of A with one element of B?]

Solution: The following algorithm solves this problem in O(logn) time:

MEDIAN(A[1..n],B[1..n]):
if n < 10t
use brute force
else if A[n/2] > B[n/2]
return MEDIAN(A[1..n/2],B[n/2+1..n])
else
return MEDIAN(A[n/2+1..n],B[1..n/2])

Suppose A[n/2] > B[n/2]. Then A[n/2 + 1] is larger than all n elements in A[1..n/2] U
B[1..n/2], and therefore larger than the median of AU B, so we can discard the upper half of A.
Similarly, B[n/2—1] is smaller than all n+ 1 elements of A[n/2..n]UB[n/2+1..n], and therefore
smaller than the median of AU B, so we can discard the lower half of B. Because we discard the
same number of elements from each array, the median of the remaining subarrays is the median of
the original AU B. |

CS/ECE 374 Lab 6 Solutions Spring 2021

4. Suppose you have an algorithm that given as input a directed graph G = (V,E), nodes s,t € V,
and an integer k, outputs whether there is path from s to t in G with at most k edges. Thus the
algorithm is solving a decision problem. Now you want to use this decision algorithm as a black
box to find the length of the shortest path from s to t, which is an optimization problem. How do
you reduce the optimization problem to the decision problem? What is an upper bound on the
number of calls to the decision problem that your optimization algorithm makes? Assume n is the
number of nodes in G. Now suppose the graphs has non-negative integer edge lengths with U
being the largest edge length and L > 1 being the smallest edge length. Now how many calls will
your algorithm take? Is it polynomial in the input length?

Solution: This is a solution sketch. We will assume s # t otherwise the shortest path length is 0.
The shortest path length is then an integer in the range 1 to n — 1 since the graph is unweighted.
Binary search will require O(logn) calls to the decision problem. A naive strategy of asking each
value of k in the range requires n calls. If the graph is weighted the shortest path length can be at
most (n — 1)U and at least L. Hence binary search will require O(lognU/L) calls which is at most
O(logn +1logU) since L > 1. Note that writing U in binary take O(log U) bits so the number of
calls is polynomial in the input length. Note that if one uses naive strategy then the number of
calls can be Q(nU) which is not necessarily polynomial in the input if U is very large, say 2". W

To think about later:

5. Now suppose you are given two sorted arrays A[1..m] and B[1..n] and an integer k. Describe a
fast algorithm to find the kth smallest element in the union AU B. For example, given the input

Al1..8]1=[0,1,6,9,12,13,18,20] B[1..5]=[2,5,7,17,19] k=6

your algorithm should return the integer 7.

Solution: The following algorithm solves this problem in O(log min{k, m+n—k}) = O(log(m+n))
time:

SELECT(A[1..m],B[1..n],k):
ifk<(m+n)/2
return MEDIAN(A[1..k],B[1..k])

else

return MEDIAN(A[k —n..m],B[k—m..n])

Here, MEDIAN is the algorithm from problem 3 with one minor tweak. If MEDIAN wants an entry
in either A or B that is outside the bounds of the original arrays, it uses the value —oo if the index
is too low, or oo if the index is too high, instead of creating a core dump [|

6. Suppose you have an algorithm that given as input a directed graph G = (V,E), nodes s,t € V,
and an integer k, outputs whether the number of distinct shortest paths from s to t is at least
k. Describe an algorithm that counts the number of distinct shortest s-t paths in G. Does your
algorithm run in polynomial time?

Solution: This is a solution sketch. We do binary search again but now we need to upper bound
the number of distinct shortest paths from s to t in G. It is not hard to construct examples of
graphs where the number is at least 2"/2 where n is the number of nodes. A crude upper bound is

CS/ECE 374 Lab 6 Solutions Spring 2021

m™ where m is the number of edges and n is the number of nodes. Why? Assuming this upper
bound binary search will take O(mlogn) calls and this is polynomial in the input length. Note
that writing down the answer may take O(mlogn) bits but that is also polynomial in the input
length. [|

