Design Turing machines $M = (Q, \Sigma, \Gamma, \delta, \text{start}, \text{accept}, \text{reject})$ for each of the following tasks, either by listing the states Q, the tape alphabet Γ, and the transition function δ (in a table), or by drawing the corresponding labeled graph.

Each of these machines uses the input alphabet $\Sigma = \{1, \#\}$; the tape alphabet Γ can be any superset of $\{1, \#, \Box, \triangleright\}$ where \Box is the blank symbol and \triangleright is a special symbol marking the left end of the tape. Each machine should reject any input not in the form specified below.

The solutions below describe single-tape, single-head Turing machines. There are arguably simpler Turing machines that multiple tapes and/or multiple heads.

1. On input 1^n, for any non-negative integer n, write $1^n\#1^n$ on the tape and accept.

Solution: Our Turing machine M_1 uses the tape alphabet $\Gamma = \{0, 1, \#, \Box, \triangleright\}$ and the following states, in addition to accept and reject:

- **start** — Initialize the tape by replacing every 1 with 0. When we find a blank, write $\#$ and start scanning left.
- **scanL** — Scan left for the rightmost 0. If we find it, replace it with 1 and start scanning right. If we find \triangleright instead, we’re done; halt and accept.
- **scanR** — Scan right for the leftmost blank. When we find it, write 1 and start scanning left again.

Here is the transition graph of the machine. To simplify the drawing, we omit all transitions into the hidden reject state.

```
start \square/\#, -1
\quad 1/0, +1
1\triangleright/\triangleright, +1
\quad 0/1, +1
\quad \square/\#, -1
\quad \#/#, -1
\quad #/#, -1
\quad #/#, +1

\quad \triangleright/\triangleright, -1
\quad \square/\#, +1
\quad \#/#, +1

\quad \triangleright/\triangleright, -1

\quad \#/#, -1
```

Here is the transition function; again, all unspecified transitions lead to the reject state.

<table>
<thead>
<tr>
<th>$\delta(p, a)$</th>
<th>q, b, Δ</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta(\text{start}, 1)$</td>
<td>(start, 0, +1)</td>
<td>init phase: replace 1s with 0s</td>
</tr>
<tr>
<td>$\delta(\text{start}, \Box)$</td>
<td>(scanL, #, −1)</td>
<td>finished init phase; write $#$ and start scanning left</td>
</tr>
<tr>
<td>$\delta(\text{scanL}, 1)$</td>
<td>(scanL, 1, −1)</td>
<td>scan left to rightmost 0</td>
</tr>
<tr>
<td>$\delta(\text{scanL}, #)$</td>
<td>(scanL, #, −1)</td>
<td></td>
</tr>
<tr>
<td>$\delta(\text{scanL}, 0)$</td>
<td>(scanR, 1, +1)</td>
<td>found it; write 1 and start scanning right</td>
</tr>
<tr>
<td>$\delta(\text{scanL}, \triangleright)$</td>
<td>(accept, \triangleright, +1)</td>
<td>found start of tape instead; we’re done!</td>
</tr>
<tr>
<td>$\delta(\text{scanR}, 1)$</td>
<td>(scanR, 1, +1)</td>
<td>main loop: scan right to leftmost \Box</td>
</tr>
<tr>
<td>$\delta(\text{scanR}, #)$</td>
<td>(scanR, #, +1)</td>
<td></td>
</tr>
<tr>
<td>$\delta(\text{scanR}, \Box)$</td>
<td>(scanL, 1, −1)</td>
<td>found it; write 1 and start scanning left</td>
</tr>
</tbody>
</table>

2. On input $\#^n1^m$, for any non-negative integers m and n, write 1^m on the tape and accept. In other words, delete all the $\#$s, thereby shifting the 1s to the start of the tape.

Solution: Our machine M_2 repeatedly scans for the last $\#$ and replaces it with 1, then scans for the rightmost 1 and replaces it with a blank, until the search for the last $\#$ fails. We use the minimal tape alphabet $\Gamma = \{1, \#, \square, \triangleright\}$ and the following states, in addition to accept and reject:

- **start** — Scan right past all $\#$
- **scanL** — Scan left to the rightmost $\#$ or \triangleright. If we find $\#$, replace it with 1; if we find \triangleright, we’re done!
- **scanR** — Scan right to the leftmost \square (just after the rightmost 1, if any).
- **erase1** — Replace the rightmost 1 with \square

Here is the transition graph of the machine. To simplify the drawing, we omit all transitions into the hidden reject state.
3. On input $\#1^n$, for any non-negative integer n, write $\#1^{2n}$ on the tape and accept. [Hint: Modify the Turing machine from problem 1.]

Solution: Our machine M_3 mirrors M_1 with a few minor changes. First, we won’t both writing a second $\#$ between the first and second copies of the input string; second, we treat the initial $\#$ as the de-facto beginning of the tape. Here are the states:

- **start** — Scan right for first blank, replacing 1s with 0s
- **scanL** — Scan left for rightmost 0, replace with 1
- **scanR** — Scan right for leftmost blank, replace with 1
- **done** — Found the initial $\#$; reset the head to the start position and accept

And here is the transition graph, as usual omitting transitions to reject.
4. On input 1^n, for any non-negative integer n, write 1^{2^n} on the tape and accept. [Hint: Use the three previous Turing machines as subroutines.]

Solution: Our machine M_4 works in several phases:

- Write $#1$ at the end of the input string
- Repeatedly transform $1^a#^b1^c$ into $1^{a-1}#^{b+1}1^{2c}$ using a small modification of M_3 (which uses M_1 as a subroutine).
- When the initial string of 1s is empty, remove all $#$s using M_2.

So here are the states:

- **start:** Scan right for a blank, and write $#$
- **write1:** Write 1 after $#$ and start main loop
- three states from M_3 to double the number 1s to the right of $#$s
- **scanL1:** scan left for rightmost 1 left of $#$s, replace with $#$ and repeat main loop
- four states from M_2 to delete the $#$s

![Turing Machine Diagram](image-url)