Recall fooling sets and distinguishability. Two strings $x, y \in \Sigma^*$ are suffix distinguishable with respect to a given language L if there is a string z such that exactly one of xz and yz is in L. This means that any DFA that accepts L must necessarily take x and y to different states from its start state. A set of strings F is a fooling set for L if any pair of strings $x, y \in F, x \neq y$ are distinguishable. This means that any DFA for L requires at least $|F|$ states. To prove non-regularity of a language L you need to find an infinite fooling set F for L. Given a language L try to find a constant size fooling set first and then prove that one of size n exists for any given n which is basically the same as finding an infinite fooling set.

Note that another method to prove non-regularity is via reductions. Suppose you want to prove that L is non-regular. You can do regularity preserving operations on L to obtain a language L' which you already know is non-regular. Then L must not have been regular. For instance if \bar{L} is not regular then L is also not regular. You will see an example in Problem 4 below.

Prove that each of the following languages is not regular.

1. $\{0^{2n}1^n \mid n \geq 0\}$

2. $\{0^m1^n \mid m \neq 2n\}$

3. $\{0^{2n} \mid n \geq 0\}$

4. Strings over $\{0, 1\}$ where the number of 0s is exactly twice the number of 1s.
 - Describe an infinite fooling set for the language.
 - Use closure properties. What is language if you intersect the given language with 0^*1^*?

5. Strings of properly nested parentheses $()$, brackets $[]$, and braces $\{ \}$.
 - Describe an infinite fooling set for the language.
 - Use closure properties.

6. Strings of the form $w_1\#w_2\#\cdots\#w_n$ for some $n \geq 2$, where each substring w_i is a string in $\{0, 1\}^*$, and some pair of substrings w_i and w_j are equal.

Work on these later:

7. $\{0^{n^2} \mid n \geq 0\}$

8. $\{w \in (0 + 1)^* \mid w$ is the binary representation of a perfect square}