
CS/ECE 374 Lab 3½ Solutions Spring 2021

Let L be an arbitrary regular language over the alphabet Σ= {0,1}. Prove that the following
languages are also regular. (You probably won’t get to all of these.)

1. FlipOdds(L) := {flipOdds(w) | w ∈ L}, where the function flipOdds inverts every odd-
indexed bit in w. For example:

flipOdds(0000111101010101) = 1010010111111111

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct a new DFA
M ′ = (Q′, s′, A′,δ′) that accepts FlipOdds(L) as follows.

Intuitively, M ′ receives some string flipOdds(w) as input, restores every other bit
to obtain w, and simulates M on the restored string w.

Each state (q,flip) of M ′ indicates that M is in state q, and we need to flip the
next input bit if flip= True.

Q′ =Q× {True,False}
s′ = (s,True)
A′ = A× {True,False}

δ′((q,False),0) =
�

δ(q,0),True
�

δ′((q,True),0) =
�

δ(q,1),False
�

δ′((q,False),1) =
�

δ(q,1),True
�

δ′((q,True),1) =
�

δ(q,0),False
�

By treating 1 and 0 as synonyms for True and False, respectively, we can rewrite δ′
more compactly as

δ′((q,flip), a) =
�

δ(q, a⊕ flip), ¬flip
�

�

1



CS/ECE 374 Lab 3½ Solutions Spring 2021

2. UnflipOdd1s(L) := {w ∈ Σ∗ | flipOdd1s(w) ∈ L}, where the function flipOdd1 inverts
every other 1 bit of its input string, starting with the first 1. For example:

flipOdd1s(0000111101010101) = 0000010100010001

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct a new DFA
M ′ = (Q′, s′, A′,δ′) that accepts UnflipOdd1s(L) as follows.

Intuitively, M ′ receives some string w as input, flips every other 1 bit, and simulates
M on the transformed string.

Each state (q,flip) of M ′ indicates that M is in state q, and we need to flip the
next 1 bit of and only if flip= True.

Q′ =Q× {True,False}
s′ = (s,True)
A′ = A× {True,False}

δ′((q,False),0) =
�

δ(q,0),False
�

δ′((q,True),0) =
�

δ(q,0),True
�

δ′((q,False),1) =
�

δ(q,1),True
�

δ′((q,True),1) =
�

δ(q,0),False
�

Once again, by treating 1 and 0 as synonyms for True and False, respectively, we
can rewrite δ′ more compactly as

δ′((q,flip), a) =
�

δ(q,¬flip∧ a), flip⊕ a
�

�

2



CS/ECE 374 Lab 3½ Solutions Spring 2021

3. FlipOdd1s(L) := {flipOdd1s(w) | w ∈ L}, where the function flipOdd1 is defined as in the
previous problem.

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct a new NFA
M ′ = (Q′, s′, A′,δ′) that accepts FlipOdd1s(L) as follows.

Intuitively, M ′ receives some string flipOdd1s(w) as input, guesses which 0 bits to
restore to 1s, and simulates M on the restored string w. No string in FlipOdd1s(L)
has two 1s in a row, so if M ′ ever sees 11, it rejects.

Each state (q,flip) of M ′ indicates that M is in state q, and we need to flip a 0 bit
before the next 1 bit if and only if flip= True.

Q′ =Q× {True,False}
s′ = (s,True)
A′ = A× {True,False}

δ′((q,False),0) =
��

δ(q,0), False
�	

δ′((q,True),0) =
��

δ(q,0), True
�

,
�

δ(q,1), False
�	

δ′((q,False),1) =
��

δ(q,1), True
�	

δ′((q,True),1) =∅

The last transition indicates that we waited too long to flip a 0 to a 1, so we should
kill the current execution thread. �

4. Prove that the language insert1(L) := {x1y | x y ∈ L} is regular.
Intuitively, insert1(L) is the set of all strings that can be obtained from strings in L by insert-
ing exactly one 1. For example, if L = {ε,OOK!}, then insert1(L) = {1,1OOK!,O1OK!,
OO1K!,OOK1!,OOK!1}.

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct an NFA
M ′ = (Q′, s′, A′,δ′) that accepts insert1(L) as follows.

Intuitively, M ′ nondeterministically chooses a 1 in the input string to ignore, and
simulates M running on the rest of the input string.

• The state (q,before) means (the simulation of) M is in state q and M ′ has not
yet skipped over a 1.

• The state (q,after) means (the simulation of) M is in state q and M ′ has already
skipped over a 1.

Q′ :=Q× {before,after}
s′ := (s,before)

A′ :=
�

(q,after)
�

� q ∈ A
	

δ′((q,before), a) =

¨
�

(δ(q, a),before), (q,after)
	

if a = 1
�

(δ(q, a),before)
	

otherwise
δ′((q,after), a) =

�

(δ(q, a),after)
	

�

3



CS/ECE 374 Lab 3½ Solutions Spring 2021

5. Prove that the language delete1(L) := {x y | x1y ∈ L} is regular.
Intuitively, delete1(L) is the set of all strings that can be obtained from strings in L
by deleting exactly one 1. For example, if L = {101101,00,ε}, then delete1(L) =
{01101,10101,10110}.

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct an NFA
M ′ = (Q′, s′, A′,δ′) with ε-transitions that accepts delete1(L) as follows.

Intuitively, M ′ simulates M , but inserts a single 1 into M ’s input string at a
nondeterministically chosen location.

• The state (q,before) means (the simulation of) M is in state q and M ′ has not
yet inserted a 1.

• The state (q,after) means (the simulation of) M is in state q and M ′ has already
inserted a 1.

Q′ :=Q× {before,after}
s′ := (s,before)

A′ :=
�

(q,after)
�

� q ∈ A
	

δ′((q,before),ε) =
�

(δ(q,1),after)
	

δ′((q,after),ε) =∅

δ′((q,before), a) =
�

(δ(q, a),before)
	

δ′((q,after), a) =
�

(δ(q, a),after)
	

�

4



CS/ECE 374 Lab 3½ Solutions Spring 2021

6. Consider the following recursively defined function on strings:

stutter(w) :=

¨

ε if w= ε
aa • stutter(x) if w= ax for some symbol a and some string x

Intuitively, stutter(w) doubles every symbol in w. For example:

• stutter(PRESTO) = PPRREESSTTOO
• stutter(HOCUS�POCUS) = HHOOCCUUSS��PPOOCCUUSS

(a) Prove that the language stutter−1(L) := {w | stutter(w) ∈ L} is regular.

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct an DFA
M ′ = (Q′, s′, A′,δ′) that accepts stutter−1(L) as follows.

Intuitively, M ′ reads its input string w and simulates M running on stutter(w).
Each time M ′ reads a symbol, the simulation of M reads two copies of that
symbol.

Q′ =Q

s′ = s

A′ = A

δ′(q, a) = δ(δ(q, a), a) �

5



CS/ECE 374 Lab 3½ Solutions Spring 2021

(b) Prove that the language stutter(L) := {stutter(w) | w ∈ L} is regular.

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. wWe construct an DFA
M ′ = (Q′, s′, A′,δ′) that accepts stutter(L) as follows.

M ′ reads the input string stutter(w) and simulates M running on input w.
• State (q,•) means M ′ has just read an even-indexeda symbol in stutter(w),

so M should ignore the next symbol (if any).
• For any symbol a ∈ Σ, state (q, a) means M ′ has just read an odd-indexed

symbol in stutter(w), and that symbol was a. If the next symbol is an a,
then M should transition normally; otherwise, the simulation should fail.

• The state fail means M ′ has read two successive symbols that should have
been equal but were not; the input string is not stutter(w) for any string w.

Q′ =Q× ({•} ∪Σ)∪ {fail} for some new symbol • 6∈ Σ
s′ = (s,•)
A′ = {(q,•) | q ∈ A}

δ′((q,•), a) = (q, a) for all q ∈Q and a ∈ Σ

δ′((q, a), b) =

¨

(δ(q, a),•) if a = b

fail if a 6= b
for all q ∈Q and a, b ∈ Σ

δ′(fail, a) = fail for all a ∈ Σ �
aThe first symbol in the input string has index 1; the second symbol has index 2, and so on.

6



CS/ECE 374 Lab 3½ Solutions Spring 2021

Solution (via regular expressions): Let R be an arbitrary regular expression.
We recursively construct a regular expression stutter(R) as follows:

stutter(R) :=



























∅ if R=∅
stutter(w) if R= w for some string w ∈ Σ∗

stutter(A) + stutter(B) if R= A+ B for some regexen A and B

stutter(A) • stutter(B) if R= A• B for some regexen A and B

(stutter(A))∗ if R= A∗ for some regex A

To prove that L(stutter(R)) = stutter(L(R)), we need the following identities for
arbitrary languages A and B:
• stutter(A∪ B) = stutter(A)∪ stutter(B)
• stutter(A• B) = stutter(A) • stutter(B)
• stutter(A∗) = (stutter(A))∗

These identities can all be proved by inductive definition-chasing, after which the
claim L(stutter(R)) = stutter(L(R)) follows by induction. We leave the details of
the induction proofs as an exercise for a future semester an exam the reader.

Equivalently, we can directly transform R into stutter(R) by replacing every
explicit string w ∈ Σ∗ inside R with stutter(w) (with additional parentheses if
necessary). For example:

stutter
�

(1+ ε)(01)∗(0+ ε) +0∗
�

= (11+ ε)(0011)∗(00+ ε) + (00)∗

Although this may look simpler, actually proving that it works requires the same
induction arguments. �

7



CS/ECE 374 Lab 3½ Solutions Spring 2021

7. Consider the following recursively defined function on strings:

evens(w) :=











ε if w= ε
ε if w= a for some symbol a

b · evens(x) if w= abx for some symbols a and b and some string x

Intuitively, evens(w) skips over every other symbol in w. For example:

• evens(EXPELLIARMUS) = XELAMS

• evens(AVADA�KEDAVRA) = VD�EAR.

Once again, let L be an arbitrary regular language.

(a) Prove that the language evens−1(L) := {w | evens(w) ∈ L} is regular.

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct a DFA
M ′ = (Q′, s′, A′,δ′) that accepts evens−1(L) as follows:

Q′ =Q× {0, 1}
s′ = (s, 0)

A′ = A× {0, 1}

δ′((q, 0), a) = (q, 1)

δ′((q, 1), a) = (δ(q, a), 0)

M ′ reads its input string w and simulates M running on evens(w).
• State (q, 0)means M ′ has just read an even symbol in w, so M should ignore

the next symbol (if any).
• State (q, 1) means M ′ has just read an odd symbol in w, so M should read

the next symbol (if any).
�

8



CS/ECE 374 Lab 3½ Solutions Spring 2021

(b) Prove that the language evens(L) := {evens(w) | w ∈ L} is regular.

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct an NFA
M ′ = (Q′, s′, A′,δ′) that accepts evens(L) as follows.

Intuitively, M ′ reads the input string evens(w) and simulates M running on
string w, while nondeterministically guessing the missing symbols in w.
• When M ′ reads the symbol a from evens(w), it guesses a symbol b ∈ Σ and

simulates M reading ba from w.
• When M ′ finishes evens(w), it guesses whether w has even or odd length,

and in the odd case, it guesses the last symbol in w.

Q′ =Q

s′ = s

A′ = A∪
�

q ∈Q
�

� δ(q, a)∩ A 6=∅ for some a ∈ Σ
	

δ′(q, a) =
⋃

b∈Σ

�

δ
�

δ(q, b), a
�	

�

9


