CS/ECE 374 Lab 3% Solutions Spring 2021

Let L be an arbitrary regular language over the alphabet 2 = {0, 1}. Prove that the following
languages are also regular. (You probably won't get to all of these.)

1. FLipOpDps(L) := {flipOdds(w) | w € L}, where the function flipOdds inverts every odd-
indexed bit in w. For example:

flipOdds(0000111101010101)=1010010111111111

Solution: Let M = (Q,s,A,5) be a DFA that accepts L. We construct a new DFA
M’ =(Q,s’,A’,8") that accepts FLipODDS(L) as follows.

Intuitively, M’ receives some string flipOdds(w) as input, restores every other bit
to obtain w, and simulates M on the restored string w.

Each state (q,flip) of M’ indicates that M is in state g, and we need to flip the
next input bit if flip = TRUE.
Q' = Q x {TRUE, FALSE}
s’ = (s, TRUE)
A’ = A x {TRUE, FALSE}
5'((q,FALSE), 0) = (é(q, 0), TRUE)
&'((g, TruE), 0) = (5(g, 1), FALSE)
6'((q,FaLsE), 1) = (5(q, 1), TRUE)
6'((q, TrRUE), 1) = (5(q, 0), FALSE)

By treating 1 and 0 as synonyms for TRUE and FALSE, respectively, we can rewrite &’
more compactly as

&'((q.flip), @) = (6(q, a @ flip), ~flip)

CS/ECE 374 Lab 3% Solutions Spring 2021

2. UNFLIPODD1s(L) := {w € ¥* | flipOdd1s(w) € L}, where the function flipOdd1 inverts
every other 1 bit of its input string, starting with the first 1. For example:

flipOdd1s(0000111101010101) =0000010100010001

Solution: Let M = (Q,s,A,5) be a DFA that accepts L. We construct a new DFA
M’ =(Q,s’,A’,8) that accepts UNFLIPODD15(L) as follows.

Intuitively, M’ receives some string w as input, flips every other 1 bit, and simulates
M on the transformed string.

Each state (q,flip) of M’ indicates that M is in state g, and we need to flip the
next 1 bit of and only if flip = TRUE.

Q' = Q x {TRUE, FALSE}

s’ = (s, TRUE)

A’ = A x {TRUE, FALSE}
5'((q,FaLsE), 0) = (5(q, 0), FALSE)
&'((g, TruE), 0) = (6(g, ©), TRUE)
5'((q,FaLsE), 1) = (5(q, 1), TRUE)
5'((q, TrRUE), 1) = (5(q, 0), FALSE)

Once again, by treating 1 and 0 as synonyms for TRUE and FALSE, respectively, we
can rewrite 5’ more compactly as

&'((q.flip),a) = (6(g, ~flip A @), flip® a) n

CS/ECE 374 Lab 3% Solutions Spring 2021

3. FLIPODD1s(L) := {flipOdd1s(w) | w € L}, where the function flipOdd1 is defined as in the
previous problem.

Solution: Let M = (Q,s,A, &) be a DFA that accepts L. We construct a new NFA
M’ =(Q’,s’,A’,8) that accepts FLipOpD1s(L) as follows.

Intuitively, M’ receives some string flipOdd1s(w) as input, guesses which 0 bits to
restore to 1s, and simulates M on the restored string w. No string in FLIPOpp1s(L)
has two 1s in a row, so if M’ ever sees 11, it rejects.

Each state (q,flip) of M’ indicates that M is in state g, and we need to flip a © bit
before the next 1 bit if and only if flip = TRUE.

Q' = Q x {TRUE, FALSE}
s’ = (s, TRUE)
A’ = A x {TRUE, FALSE}
5'((q, FaLsE), 0) = {(5(q, ©), FaLse)}
6'((q, TRUE), 0) = {(é(q, 0), TRUE), (S(q, 1), FALSE)}
&'((q,FarsE), 1) = {(8(q, 1), TruE)}
6'((q, TRUE), 1) =&

The last transition indicates that we waited too long to flip a @ to a 1, so we should
kill the current execution thread. |

4. Prove that the language insert1(L) := {x1y | xy € L} is regular.

Intuitively, insert1(L) is the set of all strings that can be obtained from strings in L by insert-
ing exactly one 1. For example, if L = {¢,00K!}, then insert1(L) = {1, 100K!,010K!,
001K!,00K1!,00K!1}.

Solution: Let M = (Q,s,A,6) be a DFA that accepts L. We construct an NFA
M’ =(Q,s’,A’,8") that accepts insert1(L) as follows.

Intuitively, M’ nondeterministically chooses a 1 in the input string to ignore, and
simulates M running on the rest of the input string.
* The state (q, before) means (the simulation of) M is in state ¢ and M’ has not
yet skipped over a 1.

* The state (g, after) means (the simulation of) M is in state g and M’ has already
skipped over a 1.

Q' := Q x {before, after}

s’ := (s, before)

A :={(q, after) | q €A}

{(5(q, a), before), (q,after)} ifa=1

{(5 (q,a), before)} otherwise

5'((g, after),) = {(5(q, @), after)} .

5'((q, before),a) = {

CS/ECE 374 Lab 3% Solutions Spring 2021

5. Prove that the language delete1(L) := {xy | x1y € L} is regular.

Intuitively, delete1(L) is the set of all strings that can be obtained from strings in L
by deleting exactly one 1. For example, if L = {101101,00,¢}, then deletel(L) =
{01101,10101,10116}.

Solution: Let M = (Q,s,A,8) be a DFA that accepts L. We construct an NFA
M’ =(Q,s’,A’,8") with e-transitions that accepts delete1(L) as follows.

Intuitively, M’ simulates M, but inserts a single 1 into M’s input string at a
nondeterministically chosen location.
* The state (q, before) means (the simulation of) M is in state ¢ and M’ has not
yet inserted a 1.
* The state (g, after) means (the simulation of) M is in state g and M’ has already
inserted a 1.
Q' := Q x {before, after}
s’ := (s, before)
A" :={(q, after) | q €A}
&'((q, before), e) = {((q, 1), after) }
&§'((q, after),e) =@

&'((g, before),a) = {(5(q, a), before)}
&'((q, after),a) = {(6(q, a), after)} -

CS/ECE 374 Lab 3% Solutions Spring 2021

6. Consider the following recursively defined function on strings:

ifw=e
aa * stutter(x) if w = ax for some symbol a and some string x

€
stutter(w) := {

Intuitively, stutter(w) doubles every symbol in w. For example:

e stutter(PRESTO) = PPRREESSTTO0
e stutter(HOCUS©POCUS) = HHOOCCUUSS©oPPOOCCUUSS

(@) Prove that the language stutter (L) := {w | stutter(w) € L} is regular.

Solution: Let M = (Q,s,A,6) be a DFA that accepts L. We construct an DFA
M’ =(Q’,s’,A’,5") that accepts stutter (L) as follows.

Intuitively, M’ reads its input string w and simulates M running on stutter(w).
Each time M’ reads a symbol, the simulation of M reads two copies of that

symbol.
Q' =Q
s'=s
A=A
5'(g,a) = 6(5(q,a),a) m

CS/ECE 374 Lab 3% Solutions Spring 2021

(b) Prove that the language stutter(L) := {stutter(w) | w € L} is regular.

Solution: Let M = (Q,s,A, 6) be a DFA that accepts L. wWe construct an DFA
M’ =(Q,s’,A’,8’) that accepts stutter(L) as follows.
M’ reads the input string stutter(w) and simulates M running on input w.

* State (q,®) means M’ has just read an even-indexed” symbol in stutter(w),
so M should ignore the next symbol (if any).

* For any symbol a € %, state (q,a) means M’ has just read an odd-indexed
symbol in stutter(w), and that symbol was a. If the next symbol is an a,
then M should transition normally; otherwise, the simulation should fail.

* The state fail means M’ has read two successive symbols that should have
been equal but were not; the input string is not stutter(w) for any string w.

Q' =Q x ({o} UX) U {fail} for some new symbol e & 3
s'=(s,0)
A'={(q,%)| g €A}

5'((g,#),a) =(q,a) forallgeQandaeX

) (6(q,a),®) ifa=5b
5'(q.a)b) =1, ¢ |

fail ifa#b
&’ (fail, a) = fail forallae> g

“The first symbol in the input string has index 1; the second symbol has index 2, and so on.

forallgeQand a,b e X

CS/ECE 374 Lab 3% Solutions Spring 2021

Solution (via regular expressions): Let R be an arbitrary regular expression.
We recursively construct a regular expression stutter(R) as follows:

(@ ifR=0

stutter(w) if R = w for some string w € ©*
stutter(R) := { stutter(A) + stutter(B) if R =A+ B for some regexen A and B
stutter(A) o stutter(B) if R=A * B for some regexen A and B
 (stutter(A))* if R = A* for some regex A

To prove that L(stutter(R)) = stutter(L(R)), we need the following identities for
arbitrary languages A and B:

o stutter(AU B) = stutter(A) U stutter(B)

e stutter(A ¢ B) = stutter(A) © stutter(B)

e stutter(A*) = (stutter(A))*
These identities can all be proved by inductive definition-chasing, after which the

claim L(stutter(R)) = stutter(L(R)) follows by induction. We leave the details of
the induction proofs as an exercise for afuture semester an-exam the reader.

Equivalently, we can directly transform R into stutter(R) by replacing every
explicit string w € ©* inside R with stutter(w) (with additional parentheses if
necessary). For example:

stutter((1+€)(01)*(0 +€) +0%) = (11+£)(0011)*(00 +¢) + (00)*

Although this may look simpler, actually proving that it works requires the same
induction arguments. [|

CS/ECE 374 Lab 3% Solutions Spring 2021

7. Consider the following recursively defined function on strings:

€ ifw=g
evens(w) :=1 ¢ if w = a for some symbol a
b - evens(x) if w = abx for some symbols a and b and some string x

Intuitively, evens(w) skips over every other symbol in w. For example:

* evens(EXPELLIARMUS) = XELAMS
* evens(AVADA©KEDAVRA) = VD<oEAR.

Once again, let L be an arbitrary regular language.

(@) Prove that the language evens (L) := {w | evens(w) € L} is regular.

Solution: Let M = (Q,s,A, &) be a DFA that accepts L. We construct a DFA
M’ =(Q/,s’,A’,5") that accepts evens™ (L) as follows:

Q' =Qx{0,1}
s’ =(s,0)
A =Ax{0,1}

5'((q,0),a)=(g,1)
5'((g,1),a) = (6(q,a),0)

M’ reads its input string w and simulates M running on evens(w).
* State (q,0) means M’ has just read an even symbol in w, so M should ignore
the next symbol (if any).

* State (q,1) means M’ has just read an odd symbol in w, so M should read
the next symbol (if any).

CS/ECE 374

Lab 3 Solutions Spring 2021

(b) Prove that the language evens(L) := {evens(w) | w € L} is regular.

Solution: Let M = (Q,s,A,5) be a DFA that accepts L. We construct an NFA
M’ =(Q,s’,A’,8") that accepts evens(L) as follows.

Intuitively, M’ reads the input string evens(w) and simulates M running on
string w, while nondeterministically guessing the missing symbols in w.
e When M’ reads the symbol a from evens(w), it guesses a symbol b € ¥ and
simulates M reading ba from w.

* When M’ finishes evens(w), it guesses whether w has even or odd length,
and in the odd case, it guesses the last symbol in w.

A'=Au{q EQ\ 5(q,a)NA# @ for some a € T}

6'(q,a) = U {5(5(q, b),a)}

bex |

