CS/ECE 374 Lab 1% Spring 2021

Give regular expressions for each of the following languages over the alphabet {0, 1}.

1. All strings containing the substring 000.

Solution: (0+ 1)*000(0 + 1)* [|

2. All strings not containing the substring 000.

Solution: (1+01+001)*(¢ + 0+ 00) [

Solution: (¢+ 0+ 00)(1(¢ + 0+ 00))* [|

3. All strings in which every run of 0s has length at least 3.

Solution: (1+ 0000%)* [

Solution: (& + 1)((e + 0000%)1)*(¢ + 0000*) (]

4. All strings in which 1 does not appear after a substring 000.

Solution: (1+ 01+ 001)*0* [

5. All strings containing at least three 0s.
Solution: (0+1)*0(0 + 1)*0(0 + 1)*0(0 + 1)* [|

Solution (clever): 1*01*01*0(0+1)* or (0 + 1)*01*01*01* [

6. Every string except 000. [Hint: Don’t try to be clever.]

Solution: Every string w # 000 satisfies one of three conditions: Either |w| < 3, or |[w| = 3 and
w # 000, or |[w| > 3. The first two cases include only a finite number of strings, so we just list them
explicitly. The last case includes all strings of length at least 4.

e+0+1+00+01+10+11
+001+010+011+100+ 101+ 110+ 111
+(1+0)(1+0)(1+0)(1+0)(1L+0)*

Solution (clever): &+ 0+ 00+ (1+01+001+000(1+ 0))(1+0)*]

CS/ECE 374 Lab 1% Spring 2021

7. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 1.

Solution: Equivalently, strings that alternate between 0s and 1s: (01 +10)*(e + 0+ 1)]

*8. All strings containing at least two 0s and at least one 1.

Solution: There are three possibilities for how such a string can begin:

» Start with 00, then any number of s, then 1, then anything.
* Start with 01, then any number of 1s, then 0, then anything.
 Start with 1, then a substring with exactly two 0s, then anything.

All together: 0001(0 4+ 1)* + 011*0(0 + 1)* + 11*01*0(0 4 1)*
Or equivalently: (000*1 + 011*0 + 11*01*0)(0 + 1) n
Solution: There are three possibilities for how the three required symbols are ordered:

* Contains a 1 before two 0s: (e+1)1(0+1)'0(0+1)0(0+1)*
* Contains a 1 between two 0s: (0+1)*0(0+1)*1(0+1)*0(0+1)*
* Contains a 1 after two 0s: (e+1)*0(e+1)0(0+1)1(0+1)*

So putting these cases together, we get the following:

e+1)1(0+1)'0(0+1)0(0+1)
+(0+1)0(0+1)"1(0+1)*0(0+1)*
+(0+1)0(0+1)"0(0+1)1(0+1)"]

Solution (clever): (0 + 1)* (101*0 +010 + 01*01) (6+1)* [|

*9. All strings w such that in every prefix of w, the number of 0s and 1s differ by at most 2.

Solution: (8(01)*1+1(10)*0)" - (¢ +0(01)*(0 + &) + 1(10)*(1 +¢))]

CS/ECE 374 Lab 1% Spring 2021

*10. All strings in which the substring 000 appears an even number of times.
(For example, 0001000 and 0000 are in this language, but 00000 is not.)

Solution: Every string in {0, 1}" alternates between (possibly empty) blocks of 0s and individual
1s; that is, {0, 1}" = (0*1)*0*. Trivially, every 000 substring is contained in some block of 0s. Our
strategy is to consider which blocks of 0s contain an even or odd number of 000 substrings.

Let X denote the set of all strings in 0" with an even number of 000 substrings. We easily
observe that X = {0" |n =1 or n is even} = 0 + (00)*.

Let Y denote the set of all strings in 0* with an odd number of 000 substrings. We easily observe
that Y ={0" | n> 1 and n is odd} = 000(00)*.

We immediately have 0* = X + Y and therefore {0,1}" = ((X + Y)1)*(X +Y).

Finally, let L denote the set of all strings in {0, 1}" with an even number of 000 substrings. A
string w € {0,1}* is in L if and only if an even number of blocks of 0s in w are in Y'; the remaining
blocks of 0s are all in X. We consider two simple subcases to help us make sure we don’t make
mistakes.

* Exactly zero blocks of 0s are in Y. This means all blocks of 0s are in X and they alternate with
blocks of 1s. We capture this by (X1)*X where the last X is to allow ending in blocks of 0s.

* Exactly two blocks of 0s are in Y. The expression (X1)*Y1-(X1)*Y (e + 1(X1)*X) captures
this where we are paying attention in the expression to what comes after the second block of
Y; either we end in that block or we need a 1 to separate a string that has zero blocks from Y.

Now we consider the general case with an even number of blocks in Y which can be zero, two
or a multiple of two that can be simulated by repetitions. We can obtain this by considering the
expression for exactly two blocks and allowing concatenation arbitrary number of times while
being careful to ensure that we separate with a 1 as needed and allowing for the expression to end
appropriately. The expression ((X 1YL (X 1)*Y1)* allows an arbitrary even number of blocks
in Y with the caveat that it always ends with Y1 if it has non-zero repetitions. We need to allow
ending in Y or (X1)*X as in the second subcase above. Letting Z = (X1)*Y1-(X1)*Y helps us
simplify the final expression.

Putting the preceding observations together we obtain the following expression.

L= (Z1)*(Z + (X1)'X)

We will not plug in the expressions for X and Y because it will make the expression too long.
There are likely to be shorter expressions based on better case analysis but debugging them is
probably not worth it unless it is very important in some application.

Whew! [|

