
CS/ECE 374 Lab 13½ Spring 2021

Proving that a problem X is NP-hard requires several steps:

• Choose a problem Y that you already know is NP-hard (because we told you so in class).

• Describe an algorithm to solve Y , using an algorithm for X as a subroutine. Typically this algorithm
has the following form: Given an instance of Y , transform it into an instance of X , and then call
the magic black-box algorithm for X .

• Prove that your algorithm is correct. This always requires two separate steps, which are usually of
the following form:

– Prove that your algorithm transforms “good” instances of Y into “good” instances of X .

– Prove that your algorithm transforms “bad” instances of Y into “bad” instances of X . Equiva-
lently: Prove that if your transformation produces a “good” instance of X , then it was given a
“good” instance of Y .

• Argue that your algorithm for Y runs in polynomial time. In particular, it suffices to prove that
your reduction runs in polynomial time if you use the simple form of reductions which will suffice
for all the problems we will ask you.

1. This is to help you recall Boolean formulae. A Boolean function f over r variables a1, a2, . . . , ar is
a function f : {0,1}r → {0,1} which assigns 0 or 1 to each possible assignment of values to the
variables. One can specify a Boolean function in several ways including a truth table. Here is a
truth table for a function on 3 variables a1, a2, a3.

a1 a2 a3 f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Suppose we are given a Boolean function on r variables a1, a2, . . . , ar via a truth table. We
wish to express f as a CNF formula using variables a1, a2, a3

It may be easier to first think about expressing using a DNF formula (a disjunction of one more
conjunctions of a set of literals). For instance the function above can be expressed as

(ā1 ∧ ā2 ∧ a3)∨ (ā1 ∧ a2 ∧ ā3)∨ (a1 ∧ ā2 ∧ a3)∨ (a1 ∧ a2 ∧ ā3)∨ (a1 ∧ a2 ∧ a3).

• What is a CNF formula for the function? Hint: Think of the complement function and
complement the DNF formula.

• Describe how one can express an arbitrary Boolean function f over r variables as a CNF
formula over the variables using at most 2r clauses.
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2. A Hamiltonian cycle in a graph G is a cycle that goes through every vertex of G exactly once.
Deciding whether an arbitrary graph contains a Hamiltonian cycle is NP-hard.

A tonian cycle in a graph G is a cycle that goes through at least half of the vertices of G. Prove
that deciding whether a graph contains a tonian cycle is NP-hard.

3. Big Clique is the following decision problem: given a graph G = (V, E), does G have a clique of size
at least n/2 where n= |V | is the number of nodes? Prove that Big Clique is NP-hard.

4. Recall the following kCOLOR problem: Given an undirected graph G, can its vertices be colored
with k colors, so that every edge touches vertices with two different colors?

(a) Describe a direct polynomial-time reduction from 3COLOR to 4COLOR.

(b) Prove that kCOLOR problem is NP-hard for any k ≥ 3.

To think about later:

5. Let G be an undirected graph with weighted edges. A Hamiltonian cycle in G is heavy if the total
weight of edges in the cycle is at least half of the total weight of all edges in G. Prove that deciding
whether a graph contains a heavy Hamiltonian cycle is NP-hard.
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• Choose a problem Y that you already know is NP-hard (because we told you so in class).

• Describe an algorithm to solve Y , using an algorithm for X as a subroutine. Typically this
algorithm has the following form: Given an instance of Y , transform it into an instance
of X , and then call the magic black-box algorithm for X .

• Prove that your algorithm is correct. This always requires two separate steps, which are
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�. A Hamiltonian cycle in a graph G is a cycle that goes through every vertex of G exactly
once. Deciding whether an arbitrary graph contains a Hamiltonian cycle is NP-hard.

A tonian cycle in a graph G is a cycle that goes through at least half of the vertices of G.
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A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.

�

A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.

6. This is an advanced abstract problem for those interested. An instance of SAT is a Boolean
formula in CNF form. One may wonder about other kinds of formulas. One can reduce a large
class of Boolean constraint satisfaction problems (referred to as CSPs) to SAT. CSPs are extensively
investigated. For a fixed r there are at most 22r

Boolean functions on r variables (why?). Let us call
this set of function Gr . For each F ⊆ Gr we obtain a constraint satisfaction problem defined by F
that we callF -SAT. An instance ofF -SAT consists of a set of n Boolean variables x1, x2, . . . , xn and
a set of m constraints (clauses). Each constraint is of the form f j(x j1 , x j2 , . . . , x jr ) where f j ∈ F
and j1, j2, . . . , jr are distinct indices in {1,2, . . . , n}. Note that no negated literals are technically
allowed but one can capture negated literals via the functions in F .

We given an example. Let r = 3 andF = { f1, f2}where f1(a1, a2, a3) is the function a1∨(ā2∧a3)
and f2(a1, a2, a3) is the function a1 = (a2 ∧ a3). Consider an instance of F -SAT on 4 variables
x1, x2, x3, x4 with the following 5 constraints:

f1(x1, x2, x3), f1(x2, x3, x4), f2(x2, x1, x4), f2(x1, x2, x3), f1(x1, x3, x4)

An instance of F -SAT is satisfiable if there is an assignment to x1, x2, . . . , xn such that every
constraint is satisfied (evaluates to 1).
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• Show that 3-SAT a special case of F -SAT for r = 3 where F is a set of 8 functions corre-
sponding to OR over 3 variables and their negations.

• Show that anyF -SAT problem for fixed r can be reduced to r-SAT. Hint: Use the first problem.
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