CS/ECE 374 Lab 12 Spring 2021

This lab is on reductions. The first problem emphasizes the care one needs in making sure that a
reduction is correct. The second one is about the notion of self-reductions; how one can reduce search
and optimization problems to decision versions in many settings.

1. Let G = (V,E) be a graph. A set of edges M C E is said to be a matching if no two edges in M
intersect at a vertex. A matching M is perfect if every vertex in V is incident to some edge in M;
alternatively M is perfect if [M| = |V|/2 (which in particular implies |V| is even). See Wikipedia
article for some example graphs and further background.

The PERFECTMATCHING problem is the following: does the given graph G have a perfect
matching? This can be solved in polynomial time which is a fundamental result in combinatorial
optimization with many applications in theory and practice. It turns out that the PERFECTMATCHING
problem is easier to solve in bipartite graphs. A graph G = (V, E) is bipartite if its vertex set V can
be partitioned into two sets L,R (left and right say) such that all edges are between L and R (in
other words L and R are independent sets). Here is an attempted reduction from general graphs
to bipartite graphs.

Given a graph G = (V,E) create a bipartite graph H = (V x {1,2},Ey) as follows. Each
vertex u is made into two copies (u,1) and (u,2) with V; = {(u,1) | u € V} as one side and
Vo, = {(u,2) | u € V} as the other side. Let E;; = {((u,1),(v,2)) | (u,v) € E}. In other words we
add an edge betwen (u, 1) and (v, 2) iff (u,v) is an edge in E. Note that ((u, 1), (u,2)) is not an
edge in H for any u € V since there are no self-loops in G.

Is the preceding reduction correct? To prove it is correct we need to check that H has a perfect
matching if and only if G has one.

* Prove that if G has perfect matching then H has a perfect matching.

* Consider G to be K5 the complete graph on 3 vertices (a triangle). Show that G has no perfect
matching but H has a perfect matching.

* Extend the previous example to obtain a graph G with an even number of vertices such that
G has no perfect matching but H has.

Thus the reduction is incorrect although one of the directions is true.

2. An independent set in a graph G is a subset S of the vertices of G, such that no two vertices in S
are connected by an edge in G. Suppose you are given a magic black box that somehow answers
the following decision problem in polynomial time:

* INPUT: An undirected graph G and an integer k.

* OUTPUT: TRUE if G has an independent set of size k, and FALSE otherwise.

(a) Using this black box as a subroutine, describe algorithms that solves the following optimization
problem in polynomial time:
* INPUT: An undirected graph G.
* OUTPUT: The size of the largest independent set in G.

(b) Using this black box as a subroutine, describe algorithms that solves the following search
problem in polynomial time:
* INPUT: An undirected graph G.
* OUTPUT: An independent set in G of maximum size.

https://en.wikipedia.org/wiki/Matching_(graph_theory)
https://en.wikipedia.org/wiki/Matching_(graph_theory)

CS/ECE 374 Lab 12 Spring 2021

To think about later:

3. Formally, a proper coloring of a graph G = (V,E) is a function c: V — {1,2,...,k}, for some
integer k, such that c(u) # c(v) for all uv € E. Less formally, a valid coloring assigns each vertex of
G a color, such that every edge in G has endpoints with different colors. The chromatic number
of a graph is the minimum number of colors in a proper coloring of G.

Suppose you are given a magic black box that somehow answers the following decision problem
in polynomial time:

* INPUT: An undirected graph G and an integer k.

* OuTPUT: TRUE if G has a proper coloring with k colors, and FALSE otherwise.
Using this black box as a subroutine, describe an algorithm that solves the following coloring
problem in polynomial time:

* INPUT: An undirected graph G.

* QUTPUT: A valid coloring of G using the minimum possible number of colors.

[Hint: You can use the magic box more than once. The input to the magic box is a graph and only
a graph, meaning only vertices and edges.]

