
CS/ECE 374 Lab 12 Solutions Spring 2021

1. Let G = (V, E) be a graph. A set of edges M ⊆ E is said to be a matching if no two edges in M
intersect at a vertex. A matching M is perfect if every vertex in V is incident to some edge in M ;
alternatively M is perfect if |M |= |V |/2 (which in particular implies |V | is even). See Wikipedia
article for some example graphs and further background.

The PERFECTMATCHING problem is the following: does the given graph G have a perfect
matching? This can be solved in polynomial time which is a fundamental result in combinatorial
optimization with many applications in theory and practice. It turns out that the PERFECTMATCHING

problem is easier to solve in bipartite graphs. A graph G = (V, E) is bipartite if its vertex set V can
be partitioned into two sets L, R (left and right say) such that all edges are between L and R (in
other words L and R are independent sets). Here is an attempted reduction from general graphs
to bipartite graphs.

Given a graph G = (V, E) create a bipartite graph H = (V × {1,2}, EH) as follows. Each
vertex u is made into two copies (u, 1) and (u, 2) with V1 = {(u, 1) | u ∈ V} as one side and
V2 = {(u, 2) | u ∈ V} as the other side. Let EH = {((u, 1), (v, 2)) | (u, v) ∈ E}. In other words we
add an edge betwen (u, 1) and (v, 2) iff (u, v) is an edge in E. Note that ((u, 1), (u, 2)) is not an
edge in H for any u ∈ V since there are no self-loops in G.

Is the preceding reduction correct? To prove it is correct we need to check that H has a perfect
matching if and only if G has one.

• Prove that if G has perfect matching then H has a perfect matching.

• Consider G to be K3 the complete graph on 3 vertices (a triangle). Show that G has no perfect
matching but H has a perfect matching.

• Extend the previous example to obtain a graph G with an even number of vertices such that
G has no perfect matching but H has.

Thus the reduction is incorrect although one of the directions is true.

Solution: • Suppose M is a perfect matching in G. We construct a perfect matching M ′ in H
as follows. For each edge (u, v) ∈ M include the edges ((u, 1), (v, 2)) and ((v, 1), (u, 2)) in M ′.
It remains to verify that M ′ is a perfect matching. For each vertex u ∈ V there is exactly one
edge (u, v) ∈ M incident to u since M is perfect. This means that in H there is exactly one
edge ((u, 1), (v, 2)) incident to vertex (u, 1) in M ′ and also exactly one edge ((v, 1), (u, 2))
incident to (u, 2). Thus M ′ is a perfect matching in H.

• Suppose the three vertices of G = K3 are labeled a, b, c. The edges of G are (a, b), (b, c), (c, a).
Then in H one can easily verify that the set of edges {((a, 1), (b, 2)), ((b, 1), (c, 2)), ((c, 1), (a, 2))}
forms a perfect matching. G does not have a perfect matching since it has an odd number of
vertices.

• Take G to be the disjoint union of two triangles, say G1 and G2. G has 6 vertices which is
even. From the preceding part one can see that the graph H obtained from the reduction has
a perfect matching since we can take the perfect matching in H1 corresponding to G1 and the
perfect matching in H2 corresponding to G2 and take their union.

�

1

https://en.wikipedia.org/wiki/Matching_(graph_theory)
https://en.wikipedia.org/wiki/Matching_(graph_theory)

CS/ECE 374 Lab 12 Solutions Spring 2021

2. An independent set in a graph G is a subset S of the vertices of G, such that no two vertices in S
are connected by an edge in G. Suppose you are given a magic black box that somehow answers
the following decision problem in polynomial time:

• INPUT: An undirected graph G and an integer k.

• OUTPUT: TRUE if G has an independent set of size k, and FALSE otherwise.

(a) Using this black box as a subroutine, describe algorithms that solves the following optimization
problem in polynomial time:

• INPUT: An undirected graph G.
• OUTPUT: The size of the largest independent set in G.

[Hint: You’ve seen this problem before.]

Solution: Suppose INDSET(V, E, k) returns TRUE if the graph (V, E) has an independent set
of size k, and FALSE otherwise. Then the following algorithm returns the size of the largest
independent set in G:

MAXINDSETSIZE(V, E):
for k← 1 to V

if INDSET(V, E, k+ 1) = FALSE

return k

A graph with n vertices cannot have an independent set of size larger than n, so this algorithm
must return a value. If G has an independent set of size k, then it also has an independent
set of size k− 1, so the algorithm is correct.

The algorithm clearly runs in polynomial time. Specifically, if INDSET(V, E, k) runs in
O((V + E)c) time, then MAXINDSETSIZE(V, E) runs in O((V + E)c+1) time.

Yes, we could have used binary search instead of linear search. Whatever. �

2

CS/ECE 374 Lab 12 Solutions Spring 2021

(b) Using this black box as a subroutine, describe algorithms that solves the following search
problem in polynomial time:

• INPUT: An undirected graph G.
• OUTPUT: An independent set in G of maximum size.

Solution (delete vertices): I’ll use the algorithm MAXINDSETSIZE(V, E) from part (a) as a
black box instead. Let G − v denote the graph obtained from G by deleting vertex v, and let
G − N(v) denote the graph obtained from G by deleting v and all neighbors of v.

MAXINDSET(G):
S←∅
k←MAXINDSETSIZE(G)
While G is not empty

v is an arbitrary vertex of G
if MAXINDSETSIZE(G − v) = k− |S|

G← G − v
else

G← G − N(v)
add v to S

return S

Correctness of this algorithm follows inductively from the following claims:

Claim 1. MAXINDSETSIZE(G − v) = k if and only if G has an independent set of size k that
excludes v.

Proof: Every independent set in G − v is also an independent set in G; it follows that
MAXINDSETSIZE(G − v)≤ k.

Suppose G has an independent set S of size k that does excludes v. Then S is also an
independent set of size k in G− v, so MAXINDSETSIZE(G− v) is at least k, and therefore equal
to k.

On the other hand, suppose G − v has an independent set S of size k. Then S is also a
maximum independent set of G (because |S|= k) that excludes v. �

The algorithm clearly runs in polynomial time. �

Solution (add edges): I’ll use the algorithm MAXINDSETSIZE(V, E) from part (a) as a black
box instead. Let G + uv denote the graph obtained from G by adding edge uv.

MAXINDSET(G):
k←MAXINDSETSIZE(G)
if k = 1

return any vertex
for all vertices u

for all vertices v
if u 6= v and uv is not an edge

if MAXINDSETSIZE(G + uv) = k
G← G + uv

S←∅
for all vertices v

if deg(v)< V − 1
add v to S

return S

3

CS/ECE 374 Lab 12 Solutions Spring 2021

The algorithms adds every edge it can without changing the maximum independent set
size. Let G′ denote the final graph. Any independent set in G′ is also an independent set
in the original input graph G. Moreover, the largest independent set in G′ is also a largest
independent set in G. Thus, to prove the algorithm correct, we need to prove the following
claims about the final graph G′:

Claim 2. The maximum independent set in G′ is unique.

Proof: Suppose the final graph G′ has more than two maximum independent sets A and B.
Pick any vertex u ∈ A\ B and any other vertex v ∈ A. The set B is still an independent set in
the graph G′ + uv. Thus, when the algorithm considered edge uv, it would have added uv to
the graph, contradicting the assumption that A is an independent set. �

Claim 3. Suppose k > 1. The unique maximum independent set of G′ contains vertex v if
and only if deg(v)< V − 1.

Proof: Let S be the unique maximum independent set of G′, and let v be any vertex of G. If
v ∈ S, then v has degree at most V − k < V − 1, because v is disconnected from every other
vertex in S.

On the other hand, suppose deg(v)< V − 1 but v 6∈ S. Then there must be at least vertex
u such that uv is not an edge in G′. Because v 6∈ S, the set S is still an independent set in
G′ + uv. Thus, when the algorithm considered edge uv, it would have added uv to the graph,
and we have a contradiction. �

The algorithm clearly runs in polynomial time. �

4

CS/ECE 374 Lab 12 Solutions Spring 2021

To think about later:

3. Formally, a proper coloring of a graph G = (V, E) is a function c : V → {1,2, . . . , k}, for some
integer k, such that c(u) 6= c(v) for all uv ∈ E. Less formally, a valid coloring assigns each vertex of
G a color, such that every edge in G has endpoints with different colors. The chromatic number
of a graph is the minimum number of colors in a proper coloring of G.

Suppose you are given a magic black box that somehow answers the following decision problem
in polynomial time:

• INPUT: An undirected graph G and an integer k.

• OUTPUT: TRUE if G has a proper coloring with k colors, and FALSE otherwise.

Using this black box as a subroutine, describe an algorithm that solves the following coloring
problem in polynomial time:

• INPUT: An undirected graph G.

• OUTPUT: A valid coloring of G using the minimum possible number of colors.

[Hint: You can use the magic box more than once. The input to the magic box is a graph and only
a graph, meaning only vertices and edges.]

Solution: First we build an algorithm to compute the minimum number of colors in any valid
coloring.

CHROMATICNUMBER(G):
for k← V down to 1

if COLORABLE(G, k− 1) = FALSE

return k

Given a graph G = (V, E) with n vertices v1, v2, . . . , vn, the following algorithm computes an array
color[1 .. n] describing a valid coloring of G with the minimum number of colors.

COLORING(G):
k← CHROMATICNUMBER(G)

〈〈—— add a disjoint clique of size k ——〉〉
H ← G
for c← 1 to k

add vertex zc to G
for i← 1 to c − 1

add edge zizc to H

〈〈—— for each vertex, try each color ——〉〉
for i← 1 to n

for c← 1 to k
add edge vizc to H

for c← 1 to k
remove edge vizc from H
if COLORABLE(H, k) = TRUE

color[i]← c
break inner loop

add edge vizc from H

return color[1 .. n]

5

CS/ECE 374 Lab 12 Solutions Spring 2021

In any k-coloring of H, the new vertices z1, . . . , zk must have k distinct colors, because every
pair of those vertices is connected. We assign color[i]← c to indicate that there is a k-coloring of
H in which vi has the same color as zc. When the algorithm terminates, color[1 .. n] describes a
valid k-coloring of G.

To prove that the algorithm is correct, we must prove that for all i, when the ith iteration of
the outer loop ends, G has a valid k-coloring that is consistent with the partial coloring color[1 .. i].
Fix an integer i. The inductive hypothesis implies that when the ith iteration of the outer loop
begins, G has a k-coloring consistent with the first i − 1 assigned colors. (The base case i = 0 is
trivial.) If we connect vi to every new vertices except zc , then vi must have the same color as zc in
any valid k-coloring. Thus, the call to COLORABLE inside the inner loop returns TRUE if and only if
H has a k-coloring in which vi has the same color as zc (and the previous i − 1 vertices are also
colored). So COLORABLE must return TRUE during the second inner loop, which completes the
inductive proof.

This algorithm makes O(kn) = O(n2) calls to COLORABLE, and therefore runs in polynomial
time. �

6

