
CS/ECE 374 Lab 11 Solutions Spring 2021

1. Describe and analyze an algorithm to compute the shortest path from vertex s to vertex t in a directed
graph with weighted edges, where exactly one edge u�v has negative weight. First check whether G has
a negative length cycle. Then, find the shortest path length from s to t. [Hint: Modify the input graph and
run Dijkstra’s algorithm.]

Solution: Let G denote the input graph, let w(x�y) denote the weight of edge x�y , and let u�v
denote the unique edge in G with negative weight.

Remove edge u�v from G and let G′ denote the resulting graph. Note that G′ has no negative
length edges. For any nodes x and y , let dist(x , y) and dist′(x , y) denote the distances from x to
y in G and G′, respectively.

If G has a negative length cycle then it must contain the edge x�y: the shortest length cycle
containing this arc can be seen to consist of a shortest path P from y to x in G′ together with the
arc x�y. The length of this cycle is dist′(y, x) + w(x�y). G has a negative length cycle iff this
quantity is negative. Thus, we can check if G has a negative length cycle by computing dist′(y, x)
in G′ via Dijkstra’s algorithm.

Suppose G does not have a negative length cycle. The shortest path in G from s to t either
traverses the edge u�v or it doesn’t; we consider each case separately. Then we have

dist(s, t) =min

�

dist′(s, t)

dist′(s, u) +w(u�v) + dist′(v, t)

�

Thus, we can compute dist(s, t) by running Dijkstra twice in G′: once starting at s to compute both
dist′(s, t) and dist′(s, u), and once starting from v to compute dist′(v, t). The algorithm runs in
O(E log V) time. �

1

CS/ECE 374 Lab 11 Solutions Spring 2021

2. You just discovered your best friend from elementary school on Twitbook. You both want to meet as soon
as possible, but you live in two different cites that are far apart. To minimize travel time, you agree to
meet at an intermediate city, and then you simultaneously hop in your cars and start driving toward each
other. But where exactly should you meet?

You are given a weighted graph G = (V, E), where the vertices V represent cities and the edges E
represent roads that directly connect cities. Each edge e has a weight w(e) equal to the time required to
travel between the two cities. You are also given a vertex p, representing your starting location, and a
vertex q, representing your friend’s starting location.

Describe and analyze an algorithm to find the target vertex t that allows you and your friend to meet as
soon as possible, assuming both of you leave home right now.

Solution: Let dist(x , y) denote the shortest-path distance from vertex x to vertex y . If my friend
and I decide to meet at some vertex t, and we leave our respective vertices at time 0, then we
will meet at time max{dist(p, t), dist(q, t)}. We can compute this meeting time for all vertices t by
running Dijkstra’s algorithm twice—once from p and once from q—and then scanning through the
vertices. The overall running time is O(E log V).

WHERETOMEET(G, p, q):
distp← DIJKSTRA(G, p) 〈〈distp(v)← shortest-path distance from p to v, for all v〉〉
distq← DIJKSTRA(G, q) 〈〈distq(v)← shortest-path distance from q to v, for all v〉〉
time←∞
for all vertices t

if time>max{distp(t), distq(t)}
time←max{distp(t), distq(t)}
best← t

return best

�

Jeff gave this problem on an exam. Several students proposed the following alternate solutions, all of
which are incorrect:

• Find the vertex t that minimizes dist(p, t) + dist(q , t). This function is actually minimized for
any vertex t on the shortest path from p to q—in particular, when t = p or t = q.

• Find the midpoint of the shortest path from p to q. See the counterexample below. The best
meeting point is the center vertex (at time 5), but the shortest path from p to q is a single edge; the
midpoint of this path is not even a vertex.

• Find the vertex t that minimizes |dist(p, t)− dist(q , t)|. This function could be minimized on
the moon if we can get there at exactly the same time. In the counterexample below, the difference
in travel times is minimized at the top middle vertex (at time 9).

• Use the unique path from p to q in the minimum spanning tree. Shortest paths and minimum
spanning trees don’t have anything to do with each other. The counterexample below shows the
minimum spanning tree on the right.

5 43

3 3

3

3

8

3 3

3

3 3

3

3

5 4
8

3 3

3

3 3

3

3

5 4
8

3 3

p qp q p q

2

CS/ECE 374 Lab 11 Solutions Spring 2021

To think about later:

3. Let G = (V, E) be a directed graph with edge length ` : E → R+. A subset of the edges E′ ⊆ E are
considered risky. Describe an algorithm that given G = (V, E), the edge lengths `, the risky subset E′,
a node s and an integer h finds for each node v ∈ V the shortest path distance from s to v among all
paths that contain at most h risky edges. Hint: Apply the dynamic programming idea behind Bellman-Ford
algorithm.

Solution: We give two solutions. The first is explicitly based on dynamic programming while the
other uses it implicitly.

Solution 1

Let d(v, i, j) be the minimum distance from s to v among all paths containing at most i total
edges and at most j risky edges. Let G′ be the graph obtained by removing all the risky edges in
G. Then d(v, i, 0) is the shortest path distance from s to v using paths with at most i edges in G′.
Using Bellman-Ford algorithm on G′ we can compute d(v, i, 0) for all v ∈ V and all 0≤ i ≤ n− 1
in O(mn) time. For j > 0,

d(v, i, j) =min



















d(v, i − 1, j)
d(v, i, j − 1)
min(u,v)∈E′ d(u, i − 1, j − 1) + `(u, v)
min(u,v)∈E−E′ d(u, i − 1, j) + `(u, v)

And what we wish to compute is d(v, n−1, k) for all v ∈ V . There are at most n2k subproblems.
To compute d(v, i, j) via the recursive definition above we need time that is proportional to the
in-degree of v. Thus the total time to compute d(v, i, j) for all v is O(m), and hence the overall
time is O(mnk)

Note: It may be tempting to try to define d(v, j) as the shortest path distance from s to v using
at most j risky edges. Why does the recursion not work with this definition?

Solution 2

Let G′ = (V, E − E′), i.e., the original graph with all risky edges removed.

An alternative approach that can use Dijkstra’s algorithm is to create h + 1 copies of G′:
G0, G1, . . . , Gh. Then, include a directed edge from vertex u in Gi to vertex v in Gi+1 if (u, v) is a
risky edge in G. The idea is that the only way a path can move from one copy of G′ to the next is
by traversing a risky edge. Now run Dijkstra’s algorithm on this new graph, from vertex s0, the
copy of s in G0. Suppose v is a vertex in G, and let v0, . . . , vh be the corresponding vertices in
copies G0, . . . , Gh. Then d(s0, vi) is just the shortest path from s to v in the original graph G that
uses exactly i risky edges. Thus, the distance from s to v in the original graph that uses at most h
risky edges is just min0≤i≤h d(s0, vi).

To evaluate the running time of this algorithm we notice that the new graph has O(nk)
nodes and O(mk) edges and we run Dijkstra’s algorithm on this graph and hence the run-time is
O(mk+ nk log(nk)) which is O(k(m+ n log n)); this is equivalent to running Dijkstra’s algorithm k
times.

Note: One may wonder why the reduction approach in the second solution results in a faster
running time. The reason for this is because the DP based solution can in fact solve a more general
problem, namely when the edge have negative lengths. �

3

