
CS/ECE 374 = Spring 2021
9 Homework 8 :

Due Thursday, April 8, 2021 at 10am

Groups of up to three people can submit joint solutions. Each problem should be submitted
by exactly one person, and the beginning of the homework should clearly state the Gradescope
names and email addresses of each group member. In addition, whoever submits the homework
must tell Gradescope who their other group members are.

The following unnumbered problems are not for submission or grading. No solutions for them
will be provided but you can discuss them on Piazza.

• In the lab you saw how to compute s-t shortest walks efficiently when the graph has a
single negative length edge. The running time is asymptotically the same as using Dijkstra’s
algorithm. Generalize this to the setting where the graph has two negative length edges.
Can you generalize the approach to any fixed number of edges? If there are k negative
length edges what would be the running time of your algorithm? Is this better than using
Bellman-Ford?

• See problems in HW 8 from Spring 2018. https://courses.engr.illinois.edu/cs374/sp2018/
A/homework/hw8.pdf

1. Let G = (V, E) be a directed graph with non-negative edge lengths `(e), e ∈ E that represents
a road network. Alice is invited to a party at her friend Bob’s house and she wants to buy
dessert at a grocery store on the drive to his house. Just as she is about to leave she realizes
that she may not have sufficient gas in her car to drive all the way to Bob’s house. Her
car can go at most a distance of R before the gas runs out. Describe an efficient algorithm
to help Alice accomplish the task of reaching Bob’s house with as little travel as feasible;
she needs to buy dessert but may or may not need to fill gap. Assume Alice’s house is at
node s and Bob’s house is at node t and that the grocery shops are given by a set X ⊂ V
and the gas stations by a set Y ⊂ V . Assume that X , Y are disjoint sets. Also assume, for
simplicity, that once Alice fills gas she can travel an infinite distance. Note that Alice could
buy dessert either before or after filling up gas, as long as she does not run out of fuel on
the way to the gas station. Express your running time as a function of n, the number of
nodes, and m, the number of edges.
Try not to modify the internals of existing algorithms. Use them on modified graphs or
multiple times on different instances to deduce the information needed for your problem.
You may want to first find a simple algorithm whose correctness that you are confident
about and then try to improve the running time. You will lose at most 2 out of 10 for a
sub-optimal running time so do not make that your priority.

2. Let G = (V, E) be a directed graph with non-negative edge lengths `(e), e ∈ E. Dijkstra’s
algorithm can be used to find the shortest path tree rooted at any given node s ∈ V .

https://courses.engr.illinois.edu/cs374/sp2018/A/homework/hw8.pdf
https://courses.engr.illinois.edu/cs374/sp2018/A/homework/hw8.pdf
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In the standard shortest path problem the length of a path v1, v2, . . . , vh is defined as
∑h−1

i=1 `(vi , vi+1) which is simply the sum of the lengths of the edges in the path. In various
situations one needs different measures.

• For a parameter k ≥ 1 the k-norm length of a path v1, v2, . . . , vk is defined to be
(
∑h−1

i=1 `(vi , vi+1)k)1/k. If k = 1 we get the standard length. Given G, s, t ∈ V and
k ≥ 1 describe an algorithm to find the shortest k-norm length path from s to t in G.
Give a small example where 2-norm s-t shortest path is different from the standard
shortest path.

• Consider the previous part but now suppose we set k to be a very large number. As
k→∞ the k-norm of a path can be seen to be the maximum length of the edges in
the path (assume that edge lengths are distinct). This corresponds to the∞ norm of
a vector which is the largest coordinate. In the context of paths, the length of the
longest edge length in a path is called its bottleneck length. Describe an algorithm to
compute the bottleneck shortest path distances from s to every node in G by adapting
Dijkstra’s algorithm.

• Not to submit: We will consider an alternate algorithm to compute the s-t bottleneck
shortest path distance. Given G, s,t and a value λ ≥ 0, describe a reduction to s-t
reachbility to decide whether there is a path from s-t with bottleneck length at most
λ. Use this and binary search to find the s-t bottleneck distance.

• Not to submit: Now consider another motivaton. Suppose each edge e ∈ E has a
probability p(e) of failing. Given a path v1, v2, . . . , vh, what is the probability that none
of the edges in the path fail assuming that the edges fail independently? Describe an
algorithm to find the s-t path with the least probability of failing.

No proofs necessary but the algorithm should be clear.

3. Since you are taking an algorithms class you decided to create a fun candy hunting game
for Halloween. You set up a maze with one way streets that can be thought of as a directed
graph G = (V, E). Each node v in the maze has w(v) amount of candy located at v.

• Each of your friends, starting at a given node s, has to figure out the maximum amount
of candy they can collect. Note that candy at node v can be collected only once even
if the node v is visited again on the way to some other place.

• Your friends complain that they can collect more candy if they get to choose the
starting node. You agree to their their request and ask them to maximize the amount
of candy they can collect starting at any node they choose.

Before you ask your friends to solve the game you need to know how to do it yourself!
Describe efficient algorithms for both variants. Ideally your algorithm should run in linear
time. Hint: Consider what happens if G is strongly connected and if it is a DAG.
No proof necessary if you use reductions to standard algorithms via graph transformations
and simple steps. Otherwise you need to prove the correctness.

4. Not to submit but strongly encouraged to solve: Let G = (V, E) a directed graph with
non-negative edge lengths. Let R ⊂ E and B ⊂ E be red and blue edges (the rest are not
colored). Given s, t and integers hr and hb describe an efficient algorithm to find the length
of a shortest s-t path that contains at most hr red edges and at most hb blue edges.
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5. Not to submit but strongly encouraged to solve: Read the notes to see the connection
between DP and DAGs. Solve the McKing problem from HW 7 via a reduction to a shortest
path problem on DAGs without invoking DP.

Solved Problem

4. Although we typically speak of “the” shortest path between two nodes, a single graph could
contain several minimum-length paths with the same endpoints.
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Four (of many) equal-length shortest paths.

Describe and analyze an algorithm to determine the number of shortest paths from a source
vertex s to a target vertex t in an arbitrary directed graph G with weighted edges. You
may assume that all edge weights are positive and that all necessary arithmetic operations
can be performed in O(1) time.
[Hint: Compute shortest path distances from s to every other vertex. Throw away all
edges that cannot be part of a shortest path from s to another vertex. What’s left?]

Solution: We start by computing shortest-path distances dist(v) from s to v, for every
vertex v, using Dijkstra’s algorithm. Call an edge u�v tight if dist(u) +w(u�v) = dist(v).
Every edge in a shortest path from s to t must be tight. Conversely, every path from s to t
that uses only tight edges has total length dist(t) and is therefore a shortest path!

Let H be the subgraph of all tight edges in G. We can easily construct H in O(V + E)
time. Because all edge weights are positive, H is a directed acyclic graph. It remains only
to count the number of paths from s to t in H.

For any vertex v, let PathsToT(v) denote the number of paths in H from v to t; we need
to compute PathsToT(s). This function satisfies the following simple recurrence:

PathsToT(v) =







1 if v = t
∑

v�w

PathsToT(w) otherwise

In particular, if v is a sink but v 6= t (and thus there are no paths from v to t), this
recurrence correctly gives us PathsToT(v) =

∑

∅= 0.
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We can memoize this function into the graph itself, storing each value PathsToT(v) at
the corresponding vertex v. Since each subproblem depends only on its successors in H, we
can compute PathsToT(v) for all vertices v by considering the vertices in reverse topological
order, or equivalently, by performing a depth-first search of H starting at s. The resulting
algorithm runs in O(V + E) time.

The overall running time of the algorithm is dominated by Dijkstra’s algorithm in the
preprocessing phase, which runs in O(E log V) time. �

Rubric: 10 points = 5 points for reduction to counting paths in a dag + 5 points for the
path-counting algorithm (standard dynamic programming rubric)
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