1. Recall that \(L_u = \{ \langle M, w \rangle \mid M \text{ accepts } w \} \) is language of a UTM, and \(L_{\text{HALT}} = \{ \langle M \rangle \mid M \text{ halts on blank input} \} \) is the Halting language.
 - Let \(L_{374A} = \{ \langle M \rangle \mid M \text{ accepts at least 374 distinct input strings} \} \). Prove that \(L_{374A} \) is undecidable.
 - Prove that \(L_u \leq L_{\text{HALT}} \)
 - **Not to submit:** Prove that \(L_{\text{HALT}} \leq L_u \).

2. Consider an instance of the Satisfiability Problem, specified by clauses \(C_1, \ldots, C_m \) over a set of Boolean variables \(x_1, \ldots, x_n \). We say that the instance is monotone if each term in each clause consists of a nonnegated variable; that is each term is equal to \(x_i \), for some \(i \), rather than \(\overline{x}_i \). Monotone instance of Satisfiability are very easy to solve: They are always satisfiable, by setting each variable equal to 1.

 For example, suppose we have the three clauses
 \[
 (x_1 \lor x_2), (x_1 \lor x_3), (x_2 \lor x_3)
 \]
 This is monotone, and indeed the assignment that sets all three variables to 1 satisfies all the clauses. But we can observe that this is not the only satisfying assignment; we could also have set \(x_1 \) and \(x_2 \) to 1 and \(x_3 \) to 0. Indeed, for any monotone instance, it is natural to ask how few variables we need to set to 1 in order to satisfy it.

 Given a monotone instance of Satisfiability, together with a number \(k \), the problem of **Monotone Satisfiability with Few True Variables** asks: Is there a satisfying assignment for the instance in which at most \(k \) variables are set to 1? Describe a polynomial time reduction from Vertex Cover to this problem. You should also prove the correctness of the reduction.

3. Given an undirected graph \(G = (V, E) \), a partition of \(V \) into \(V_1, V_2, \ldots, V_k \) is said to be a clique cover of size \(k \) if each \(V_i \) is a clique in \(G \). **CLIQUE-COVER** is the following decision problem: given \(G \) and integer \(k \), does \(G \) have a clique cover of size at most \(k \)?
 - **Not to submit:** Prove that **CLIQUE-COVER** is NP-Complete? For this part you just need to describe the reduction clearly, no proof of correctness is necessary. **Hint:** Use variable \(x(u, i) \) to indicate that node \(u \) is in partition \(i \).
 - Describe a polynomial-time reduction from \(k \)-Color to **CLIQUE-COVER**.
You should also prove the correctness of the reductions.

4. **Not to submit:** We call an undirected graph an *eight-graph* if it has an odd number of nodes, say $2n - 1$, and consists of two cycles C_1 and C_2 on n nodes each and C_1 and C_2 share exactly one node. See figure below for an eight-graph on 7 nodes.

![Eight-graph diagram](image)

Given an undirected graph G and an integer k, the EIGHT problem asks whether or not there exists a subgraph which is an eight-graph on $2k - 1$ nodes. Prove that EIGHT is NP-Complete.