
Algorithms & Models of Computation
CS/ECE 374 B, Spring 2020

Undecidability II: More
problems via reductions
Lecture 25
Friday, April 10, 2020

LATEXed: January 19, 2020 04:28

Miller, Hassanieh (UIUC) CS374 1 Spring 2020 1 / 32



Turing machines...

TM = Turing machine = program.

Miller, Hassanieh (UIUC) CS374 2 Spring 2020 2 / 32



Undecidability

Definition 1
Language L ⊆ Σ∗ is undecidable if no program P, given w ∈ Σ∗ as
input, can always stop and output whether w ∈ L or w /∈ L.

(Usually defined using TM not programs. But equivalent.

Miller, Hassanieh (UIUC) CS374 3 Spring 2020 3 / 32



Undecidability

Definition 1
Language L ⊆ Σ∗ is undecidable if no program P, given w ∈ Σ∗ as

input, can always stop and output whether w ∈ L or
w /∈ L.

(Usually defined using TM not programs. But equivalent.

Miller, Hassanieh (UIUC) CS374 3 Spring 2020 3 / 32



Undecidability

Definition 1
Language L ⊆ Σ∗ is undecidable if no program P, given w ∈ Σ∗ as

input, can always stop and

output whether w ∈ L or w /∈ L.

(Usually defined using TM not programs. But equivalent.

Miller, Hassanieh (UIUC) CS374 3 Spring 2020 3 / 32



The following language is undecidable

Decide if given a program M , and an input w , does M accepts w .
Formally, the corresponding language is

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Definition 2
A decider for a language L, is a program (or a TM) that always
stops, and outputs for any input string w ∈ Σ∗ whether or not
w ∈ L.

A language that has a decider is decidable.
Turing proved the following:

Theorem 3
ATM is undecidable.

Miller, Hassanieh (UIUC) CS374 4 Spring 2020 4 / 32



The following language is undecidable

Decide if given a program M , and an input w , does M accepts w .
Formally, the corresponding language is

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Definition 2
A decider for a language L, is a program (or a TM) that always
stops, and outputs for any input string w ∈ Σ∗ whether or not
w ∈ L.

A language that has a decider is decidable.

Turing proved the following:

Theorem 3
ATM is undecidable.

Miller, Hassanieh (UIUC) CS374 4 Spring 2020 4 / 32



The following language is undecidable

Decide if given a program M , and an input w , does M accepts w .
Formally, the corresponding language is

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Definition 2
A decider for a language L, is a program (or a TM) that always
stops, and outputs for any input string w ∈ Σ∗ whether or not
w ∈ L.

A language that has a decider is decidable.
Turing proved the following:

Theorem 3
ATM is undecidable.

Miller, Hassanieh (UIUC) CS374 4 Spring 2020 4 / 32



The following language is undecidable

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Miller, Hassanieh (UIUC) CS374 5 Spring 2020 5 / 32



Part I

Reductions

Miller, Hassanieh (UIUC) CS374 6 Spring 2020 6 / 32



Reduction

Meta definition: Problem A reduces to problem B, if given a
solution to B, then it implies a solution for A. Namely, we can solve
B then we can solve A. We will denote this by A =⇒ B.

Definition 4
oracle ORAC for language L is a function that receives as a word
w , returns TRUE ⇐⇒ w ∈ L.

Definition 5
A language X reduces to a language Y , if one can construct a TM
decider for X using a given oracle ORACY for Y .
We will denote this fact by X =⇒ Y .

Miller, Hassanieh (UIUC) CS374 7 Spring 2020 7 / 32



Reduction

Meta definition: Problem A reduces to problem B, if given a
solution to B, then it implies a solution for A. Namely, we can solve
B then we can solve A. We will denote this by A =⇒ B.

Definition 4
oracle ORAC for language L is a function that receives as a word
w , returns TRUE ⇐⇒ w ∈ L.

Definition 5
A language X reduces to a language Y , if one can construct a TM
decider for X using a given oracle ORACY for Y .
We will denote this fact by X =⇒ Y .

Miller, Hassanieh (UIUC) CS374 7 Spring 2020 7 / 32



Reduction

Meta definition: Problem A reduces to problem B, if given a
solution to B, then it implies a solution for A. Namely, we can solve
B then we can solve A. We will denote this by A =⇒ B.

Definition 4
oracle ORAC for language L is a function that receives as a word
w , returns TRUE ⇐⇒ w ∈ L.

Definition 5
A language X reduces to a language Y , if one can construct a TM
decider for X using a given oracle ORACY for Y .
We will denote this fact by X =⇒ Y .

Miller, Hassanieh (UIUC) CS374 7 Spring 2020 7 / 32



Reduction proof technique

1 B: Problem/language for which we want to prove undecidable.

2 Proof via reduction. Result in a proof by contradiction.

3 L: language of B.

4 Assume L is decided by TM M .

5 Create a decider for known undecidable problem A using M .

6 Result in decider for A (i.e., ATM).

7 Contradiction A is not decidable.

8 Thus, L must be not decidable.

Miller, Hassanieh (UIUC) CS374 8 Spring 2020 8 / 32



Reduction proof technique

1 B: Problem/language for which we want to prove undecidable.

2 Proof via reduction. Result in a proof by contradiction.

3 L: language of B.

4 Assume L is decided by TM M .

5 Create a decider for known undecidable problem A using M .

6 Result in decider for A (i.e., ATM).

7 Contradiction A is not decidable.

8 Thus, L must be not decidable.

Miller, Hassanieh (UIUC) CS374 8 Spring 2020 8 / 32



Reduction proof technique

1 B: Problem/language for which we want to prove undecidable.

2 Proof via reduction. Result in a proof by contradiction.

3 L: language of B.

4 Assume L is decided by TM M .

5 Create a decider for known undecidable problem A using M .

6 Result in decider for A (i.e., ATM).

7 Contradiction A is not decidable.

8 Thus, L must be not decidable.

Miller, Hassanieh (UIUC) CS374 8 Spring 2020 8 / 32



Reduction proof technique

1 B: Problem/language for which we want to prove undecidable.

2 Proof via reduction. Result in a proof by contradiction.

3 L: language of B.

4 Assume L is decided by TM M .

5 Create a decider for known undecidable problem A using M .

6 Result in decider for A (i.e., ATM).

7 Contradiction A is not decidable.

8 Thus, L must be not decidable.

Miller, Hassanieh (UIUC) CS374 8 Spring 2020 8 / 32



Reduction proof technique

1 B: Problem/language for which we want to prove undecidable.

2 Proof via reduction. Result in a proof by contradiction.

3 L: language of B.

4 Assume L is decided by TM M .

5 Create a decider for known undecidable problem A using M .

6 Result in decider for A (i.e., ATM).

7 Contradiction A is not decidable.

8 Thus, L must be not decidable.

Miller, Hassanieh (UIUC) CS374 8 Spring 2020 8 / 32



Reduction proof technique

1 B: Problem/language for which we want to prove undecidable.

2 Proof via reduction. Result in a proof by contradiction.

3 L: language of B.

4 Assume L is decided by TM M .

5 Create a decider for known undecidable problem A using M .

6 Result in decider for A (i.e., ATM).

7 Contradiction A is not decidable.

8 Thus, L must be not decidable.

Miller, Hassanieh (UIUC) CS374 8 Spring 2020 8 / 32



Reduction proof technique

1 B: Problem/language for which we want to prove undecidable.

2 Proof via reduction. Result in a proof by contradiction.

3 L: language of B.

4 Assume L is decided by TM M .

5 Create a decider for known undecidable problem A using M .

6 Result in decider for A (i.e., ATM).

7 Contradiction A is not decidable.

8 Thus, L must be not decidable.

Miller, Hassanieh (UIUC) CS374 8 Spring 2020 8 / 32



Reduction proof technique

1 B: Problem/language for which we want to prove undecidable.

2 Proof via reduction. Result in a proof by contradiction.

3 L: language of B.

4 Assume L is decided by TM M .

5 Create a decider for known undecidable problem A using M .

6 Result in decider for A (i.e., ATM).

7 Contradiction A is not decidable.

8 Thus, L must be not decidable.

Miller, Hassanieh (UIUC) CS374 8 Spring 2020 8 / 32



Reduction implies decidability

Lemma 6
Let X and Y be two languages, and assume that X =⇒ Y . If Y
is decidable then X is decidable.

Proof.
Let T be a decider for Y (i.e., a program or a TM). Since X reduces
to Y , it follows that there is a procedure TX |Y (i.e., decider) for X
that uses an oracle for Y as a subroutine. We replace the calls to
this oracle in TX |Y by calls to T. The resulting program TX is a
decider and its language is X . Thus X is decidable (or more formally
TM decidable).

Miller, Hassanieh (UIUC) CS374 9 Spring 2020 9 / 32



The countrapositive...

Lemma 7
Let X and Y be two languages, and assume that X =⇒ Y . If X
is undecidable then Y is undecidable.

Miller, Hassanieh (UIUC) CS374 10 Spring 2020 10 / 32



Part II

Halting

Miller, Hassanieh (UIUC) CS374 11 Spring 2020 11 / 32



The halting problem

Language of all pairs 〈M,w〉 such that M halts on w :

AHalt =
{
〈M,w〉

∣∣∣M is a TM and M stops on w
}
.

Similar to language already known to be undecidable:

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Miller, Hassanieh (UIUC) CS374 12 Spring 2020 12 / 32



The halting problem

Language of all pairs 〈M,w〉 such that M halts on w :

AHalt =
{
〈M,w〉

∣∣∣M is a TM and M stops on w
}
.

Similar to language already known to be undecidable:

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Miller, Hassanieh (UIUC) CS374 12 Spring 2020 12 / 32



On way to proving that Halting is undecidable...

Lemma 8

The language ATM reduces to AHalt. Namely, given an oracle for
AHalt one can build a decider (that uses this oracle) for ATM.

Miller, Hassanieh (UIUC) CS374 13 Spring 2020 13 / 32



One way to proving that Halting is undecidable...
Proof of lemma

Proof.
Let ORACHalt be the given oracle for AHalt. We build the following
decider for ATM.

Decider-ATM

(
〈M,w〉

)
res ← ORACHalt

(
〈M,w〉

)
// if M does not halt on w then reject.

if res = reject then
halt and reject.

// M halts on w since res =accept.
// Simulating M on w terminates in finite time.

res2 ←Simulate M on w.

return res2.

This procedure always return and as such its a decider for ATM.

Miller, Hassanieh (UIUC) CS374 14 Spring 2020 14 / 32



One way to proving that Halting is undecidable...
Proof of lemma

Proof.
Let ORACHalt be the given oracle for AHalt. We build the following
decider for ATM.

Decider-ATM

(
〈M,w〉

)
res ← ORACHalt

(
〈M,w〉

)

// if M does not halt on w then reject.

if res = reject then
halt and reject.

// M halts on w since res =accept.
// Simulating M on w terminates in finite time.

res2 ←Simulate M on w.

return res2.

This procedure always return and as such its a decider for ATM.

Miller, Hassanieh (UIUC) CS374 14 Spring 2020 14 / 32



One way to proving that Halting is undecidable...
Proof of lemma

Proof.
Let ORACHalt be the given oracle for AHalt. We build the following
decider for ATM.

Decider-ATM

(
〈M,w〉

)
res ← ORACHalt

(
〈M,w〉

)
// if M does not halt on w then reject.

if res = reject then
halt and reject.

// M halts on w since res =accept.
// Simulating M on w terminates in finite time.

res2 ←Simulate M on w.

return res2.

This procedure always return and as such its a decider for ATM.

Miller, Hassanieh (UIUC) CS374 14 Spring 2020 14 / 32



One way to proving that Halting is undecidable...
Proof of lemma

Proof.
Let ORACHalt be the given oracle for AHalt. We build the following
decider for ATM.

Decider-ATM

(
〈M,w〉

)
res ← ORACHalt

(
〈M,w〉

)
// if M does not halt on w then reject.

if res = reject then
halt and reject.

// M halts on w since res =accept.
// Simulating M on w terminates in finite time.

res2 ←Simulate M on w.

return res2.

This procedure always return and as such its a decider for ATM.

Miller, Hassanieh (UIUC) CS374 14 Spring 2020 14 / 32



The Halting problem is not decidable

Theorem 9
The language AHalt is not decidable.

Proof.
Assume, for the sake of contradiction, that AHalt is decidable. As
such, there is a TM, denoted by TMHalt, that is a decider for
AHalt. We can use TMHalt as an implementation of an oracle for
AHalt, which would imply by Lemma 8 that one can build a decider
for ATM. However, ATM is undecidable. A contradiction. It must be
that AHalt is undecidable.

Miller, Hassanieh (UIUC) CS374 15 Spring 2020 15 / 32



The same proof by figure...

〈M,w〉 〈M,w〉
TMHalt

Simulate M
on w

accept

reject

reject

accept

reject

reject

Turing machine for ATM

accept

... if AHalt is decidable, then ATM is decidable, which is impossible.

Miller, Hassanieh (UIUC) CS374 16 Spring 2020 16 / 32



Part III

Emptiness

Miller, Hassanieh (UIUC) CS374 17 Spring 2020 17 / 32



The language of empty languages

1 ETM =
{
〈M〉

∣∣∣M is a TM and L(M) = ∅
}
.

2 TMETM : Assume we are given this decider for ETM.

3 Need to use TMETM to build a decider for ATM.

4 Decider for ATM is given M and w and must decide whether M
accepts w .

5 Idea: hard-code w into M , creating a TM Mw which runs M
on the fixed string w .

6 TM Mw :
1 Input = x (which will be ignored)
2 Simulate M on w .
3 If the simulation accepts, accept. If the simulation rejects,

reject.

Miller, Hassanieh (UIUC) CS374 18 Spring 2020 18 / 32



The language of empty languages

1 ETM =
{
〈M〉

∣∣∣M is a TM and L(M) = ∅
}
.

2 TMETM : Assume we are given this decider for ETM.

3 Need to use TMETM to build a decider for ATM.

4 Decider for ATM is given M and w and must decide whether M
accepts w .

5 Idea: hard-code w into M , creating a TM Mw which runs M
on the fixed string w .

6 TM Mw :
1 Input = x (which will be ignored)
2 Simulate M on w .
3 If the simulation accepts, accept. If the simulation rejects,

reject.

Miller, Hassanieh (UIUC) CS374 18 Spring 2020 18 / 32



The language of empty languages

1 ETM =
{
〈M〉

∣∣∣M is a TM and L(M) = ∅
}
.

2 TMETM : Assume we are given this decider for ETM.

3 Need to use TMETM to build a decider for ATM.

4 Decider for ATM is given M and w and must decide whether M
accepts w .

5 Idea: hard-code w into M , creating a TM Mw which runs M
on the fixed string w .

6 TM Mw :
1 Input = x (which will be ignored)
2 Simulate M on w .
3 If the simulation accepts, accept. If the simulation rejects,

reject.

Miller, Hassanieh (UIUC) CS374 18 Spring 2020 18 / 32



Embedding strings...

1 Given program 〈M〉 and input w ...

2 ...can output a program 〈Mw〉.
3 The program Mw simulates M on w . And accepts/rejects

accordingly.

4 EmbedString(〈M,w〉) input two strings 〈M〉 and w , and
output a string encoding (TM) 〈Mw〉.

5 What is L(Mw)?

6 Since Mw ignores input x .. language Mw is either Σ∗ or ∅.
It is Σ∗ if M accepts w , and it is ∅ if M does not accept w .

Miller, Hassanieh (UIUC) CS374 19 Spring 2020 19 / 32



Embedding strings...

1 Given program 〈M〉 and input w ...

2 ...can output a program 〈Mw〉.
3 The program Mw simulates M on w . And accepts/rejects

accordingly.

4 EmbedString(〈M,w〉) input two strings 〈M〉 and w , and
output a string encoding (TM) 〈Mw〉.

5 What is L(Mw)?

6 Since Mw ignores input x .. language Mw is either Σ∗ or ∅.
It is Σ∗ if M accepts w , and it is ∅ if M does not accept w .

Miller, Hassanieh (UIUC) CS374 19 Spring 2020 19 / 32



Embedding strings...

1 Given program 〈M〉 and input w ...

2 ...can output a program 〈Mw〉.
3 The program Mw simulates M on w . And accepts/rejects

accordingly.

4 EmbedString(〈M,w〉) input two strings 〈M〉 and w , and
output a string encoding (TM) 〈Mw〉.

5 What is L(Mw)?

6 Since Mw ignores input x .. language Mw is either Σ∗ or ∅.
It is Σ∗ if M accepts w , and it is ∅ if M does not accept w .

Miller, Hassanieh (UIUC) CS374 19 Spring 2020 19 / 32



Emptiness is undecidable

Theorem 10
The language ETM is undecidable.

1 Assume (for contradiction), that ETM is decidable.

2 TMETM be its decider.

3 Build decider AnotherDecider-ATM for ATM:

AnotherDecider-ATM(〈M,w〉)
〈Mw〉 ← EmbedString (〈M,w〉)
r ← TMETM(〈Mw〉).
if r = accept then

return reject
// TMETM(〈Mw〉) rejected its input

return accept

Miller, Hassanieh (UIUC) CS374 20 Spring 2020 20 / 32



Emptiness is undecidable...
Proof continued

Consider the possible behavior of AnotherDecider-ATM on the
input 〈M,w〉.

If TMETM accepts 〈Mw〉, then L(Mw) is empty. This implies
that M does not accept w . As such, AnotherDecider-ATM

rejects its input 〈M,w〉.
If TMETM accepts 〈Mw〉, then L(Mw) is not empty. This
implies that M accepts w . So AnotherDecider-ATM accepts
〈M,w〉.

=⇒ AnotherDecider-ATM is decider for ATM.
But ATM is undecidable...
...must be assumption that ETM is decidable is false.

Miller, Hassanieh (UIUC) CS374 21 Spring 2020 21 / 32



Emptiness is undecidable...
Proof continued

Consider the possible behavior of AnotherDecider-ATM on the
input 〈M,w〉.

If TMETM accepts 〈Mw〉, then L(Mw) is empty. This implies
that M does not accept w . As such, AnotherDecider-ATM

rejects its input 〈M,w〉.
If TMETM accepts 〈Mw〉, then L(Mw) is not empty. This
implies that M accepts w . So AnotherDecider-ATM accepts
〈M,w〉.

=⇒ AnotherDecider-ATM is decider for ATM.
But ATM is undecidable...

...must be assumption that ETM is decidable is false.

Miller, Hassanieh (UIUC) CS374 21 Spring 2020 21 / 32



Emptiness is undecidable...
Proof continued

Consider the possible behavior of AnotherDecider-ATM on the
input 〈M,w〉.

If TMETM accepts 〈Mw〉, then L(Mw) is empty. This implies
that M does not accept w . As such, AnotherDecider-ATM

rejects its input 〈M,w〉.
If TMETM accepts 〈Mw〉, then L(Mw) is not empty. This
implies that M accepts w . So AnotherDecider-ATM accepts
〈M,w〉.

=⇒ AnotherDecider-ATM is decider for ATM.
But ATM is undecidable...
...must be assumption that ETM is decidable is false.

Miller, Hassanieh (UIUC) CS374 21 Spring 2020 21 / 32



Emptiness is undecidable via diagram

〈M,w〉
EmbedString

accept

reject

accept

reject

AnotherDecider-ATM

〈Mw〉 TMETM

AnotherDecider-ATM never actually runs the code for Mw . It
hands the code to a function TMETM which analyzes what the code
would do if run it. So it does not matter that Mw might go into an
infinite loop.

Miller, Hassanieh (UIUC) CS374 22 Spring 2020 22 / 32



Part IV

Equality

Miller, Hassanieh (UIUC) CS374 23 Spring 2020 23 / 32



Equality is undecidable

EQTM =
{
〈M,N〉

∣∣∣M and N are TM’s and L(M) = L(N)
}
.

Lemma 11
The language EQTM is undecidable.

Miller, Hassanieh (UIUC) CS374 24 Spring 2020 24 / 32



Proof

Proof.
Suppose that we had a decider DeciderEqual for EQTM. Then we
can build a decider for ETM as follows:

TM R:

1 Input = 〈M〉
2 Include the (constant) code for a TM T that rejects all its

input. We denote the string encoding T by 〈T〉.
3 Run DeciderEqual on 〈M,T〉.
4 If DeciderEqual accepts, then accept.
5 If DeciderEqual rejects, then reject.

Miller, Hassanieh (UIUC) CS374 25 Spring 2020 25 / 32



Part V

Regularity

Miller, Hassanieh (UIUC) CS374 26 Spring 2020 26 / 32



Many undecidable languages

1 Almost any property defining a TM language induces a
language which is undecidable.

2 proofs all have the same basic pattern.

3 Regularity language:

RegularTM =
{
〈M〉

∣∣∣M is a TM and L(M) is regular
}
.

4 DeciderRegL: Assume TM decider for RegularTM.

5 Reduction from halting requires to turn problem about deciding
whether a TM M accepts w (i.e., is w ∈ ATM) into a problem
about whether some TM accepts a regular set of strings.

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 32



Many undecidable languages

1 Almost any property defining a TM language induces a
language which is undecidable.

2 proofs all have the same basic pattern.

3 Regularity language:

RegularTM =
{
〈M〉

∣∣∣M is a TM and L(M) is regular
}
.

4 DeciderRegL: Assume TM decider for RegularTM.

5 Reduction from halting requires to turn problem about deciding
whether a TM M accepts w (i.e., is w ∈ ATM) into a problem
about whether some TM accepts a regular set of strings.

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 32



Proof continued...

1 Given M and w , consider the following TM M ′w :

TM M ′w :

(i) Input = x
(ii) If x has the form anbn, halt and accept.

(iii) Otherwise, simulate M on w .
(iv) If the simulation accepts, then accept.
(v) If the simulation rejects, then reject.

2 not executing M ′w !

3 feed string
〈
M ′w

〉
into DeciderRegL

4 EmbedRegularString: program with input 〈M〉 and w , and
outputs

〈
M ′w

〉
, encoding the program M ′w .

5 If M accepts w , then any x accepted by M ′w : L(M ′w) = Σ∗.

6 If M does not accept w , then L(M ′w) = {anbn | n ≥ 0}.

Miller, Hassanieh (UIUC) CS374 28 Spring 2020 28 / 32



Proof continued...

1 Given M and w , consider the following TM M ′w :

TM M ′w :

(i) Input = x
(ii) If x has the form anbn, halt and accept.
(iii) Otherwise, simulate M on w .
(iv) If the simulation accepts, then accept.
(v) If the simulation rejects, then reject.

2 not executing M ′w !

3 feed string
〈
M ′w

〉
into DeciderRegL

4 EmbedRegularString: program with input 〈M〉 and w , and
outputs

〈
M ′w

〉
, encoding the program M ′w .

5 If M accepts w , then any x accepted by M ′w : L(M ′w) = Σ∗.

6 If M does not accept w , then L(M ′w) = {anbn | n ≥ 0}.

Miller, Hassanieh (UIUC) CS374 28 Spring 2020 28 / 32



Proof continued...

1 Given M and w , consider the following TM M ′w :

TM M ′w :

(i) Input = x
(ii) If x has the form anbn, halt and accept.
(iii) Otherwise, simulate M on w .
(iv) If the simulation accepts, then accept.
(v) If the simulation rejects, then reject.

2 not executing M ′w !

3 feed string
〈
M ′w

〉
into DeciderRegL

4 EmbedRegularString: program with input 〈M〉 and w , and
outputs

〈
M ′w

〉
, encoding the program M ′w .

5 If M accepts w , then any x accepted by M ′w : L(M ′w) = Σ∗.

6 If M does not accept w , then L(M ′w) = {anbn | n ≥ 0}.

Miller, Hassanieh (UIUC) CS374 28 Spring 2020 28 / 32



Proof continued...

1 Given M and w , consider the following TM M ′w :

TM M ′w :

(i) Input = x
(ii) If x has the form anbn, halt and accept.
(iii) Otherwise, simulate M on w .
(iv) If the simulation accepts, then accept.
(v) If the simulation rejects, then reject.

2 not executing M ′w !

3 feed string
〈
M ′w

〉
into DeciderRegL

4 EmbedRegularString: program with input 〈M〉 and w , and
outputs

〈
M ′w

〉
, encoding the program M ′w .

5 If M accepts w , then any x accepted by M ′w : L(M ′w) = Σ∗.

6 If M does not accept w , then L(M ′w) = {anbn | n ≥ 0}.

Miller, Hassanieh (UIUC) CS374 28 Spring 2020 28 / 32



Proof continued...

1 Given M and w , consider the following TM M ′w :

TM M ′w :

(i) Input = x
(ii) If x has the form anbn, halt and accept.
(iii) Otherwise, simulate M on w .
(iv) If the simulation accepts, then accept.
(v) If the simulation rejects, then reject.

2 not executing M ′w !

3 feed string
〈
M ′w

〉
into DeciderRegL

4 EmbedRegularString: program with input 〈M〉 and w , and
outputs

〈
M ′w

〉
, encoding the program M ′w .

5 If M accepts w , then any x accepted by M ′w : L(M ′w) = Σ∗.

6 If M does not accept w , then L(M ′w) = {anbn | n ≥ 0}.

Miller, Hassanieh (UIUC) CS374 28 Spring 2020 28 / 32



Proof continued...

1 anbn is not regular...
2 Use DeciderRegL on M ′w to distinguish these two cases.
3 Note - cooked M ′w to the decider at hand.
4 A decider for ATM as follows.

YetAnotherDecider-ATM(〈M,w〉)〈
M ′w

〉
← EmbedRegularString (〈M,w〉)

r ← DeciderRegL
(〈

M ′w
〉)

.
return r

5 If DeciderRegL accepts =⇒ L(M ′w) regular (its Σ∗)

=⇒
M accepts w . So YetAnotherDecider-ATM should accept
〈M,w〉.

6 If DeciderRegL rejects =⇒ L(M ′w) is not regular =⇒
L(M ′w) = anbn =⇒ M does not accept w =⇒
YetAnotherDecider-ATM should reject 〈M,w〉.

Miller, Hassanieh (UIUC) CS374 29 Spring 2020 29 / 32



Proof continued...

1 anbn is not regular...
2 Use DeciderRegL on M ′w to distinguish these two cases.
3 Note - cooked M ′w to the decider at hand.
4 A decider for ATM as follows.

YetAnotherDecider-ATM(〈M,w〉)〈
M ′w

〉
← EmbedRegularString (〈M,w〉)

r ← DeciderRegL
(〈

M ′w
〉)

.
return r

5 If DeciderRegL accepts =⇒ L(M ′w) regular (its Σ∗) =⇒
M accepts w . So YetAnotherDecider-ATM should accept
〈M,w〉.

6 If DeciderRegL rejects =⇒ L(M ′w) is not regular =⇒
L(M ′w) = anbn =⇒ M does not accept w =⇒
YetAnotherDecider-ATM should reject 〈M,w〉.

Miller, Hassanieh (UIUC) CS374 29 Spring 2020 29 / 32



Proof continued...

1 anbn is not regular...
2 Use DeciderRegL on M ′w to distinguish these two cases.
3 Note - cooked M ′w to the decider at hand.
4 A decider for ATM as follows.

YetAnotherDecider-ATM(〈M,w〉)〈
M ′w

〉
← EmbedRegularString (〈M,w〉)

r ← DeciderRegL
(〈

M ′w
〉)

.
return r

5 If DeciderRegL accepts =⇒ L(M ′w) regular (its Σ∗) =⇒
M accepts w . So YetAnotherDecider-ATM should accept
〈M,w〉.

6 If DeciderRegL rejects =⇒ L(M ′w) is not regular =⇒
L(M ′w) = anbn

=⇒ M does not accept w =⇒
YetAnotherDecider-ATM should reject 〈M,w〉.

Miller, Hassanieh (UIUC) CS374 29 Spring 2020 29 / 32



Proof continued...

1 anbn is not regular...
2 Use DeciderRegL on M ′w to distinguish these two cases.
3 Note - cooked M ′w to the decider at hand.
4 A decider for ATM as follows.

YetAnotherDecider-ATM(〈M,w〉)〈
M ′w

〉
← EmbedRegularString (〈M,w〉)

r ← DeciderRegL
(〈

M ′w
〉)

.
return r

5 If DeciderRegL accepts =⇒ L(M ′w) regular (its Σ∗) =⇒
M accepts w . So YetAnotherDecider-ATM should accept
〈M,w〉.

6 If DeciderRegL rejects =⇒ L(M ′w) is not regular =⇒
L(M ′w) = anbn =⇒ M does not accept w =⇒
YetAnotherDecider-ATM should reject 〈M,w〉.

Miller, Hassanieh (UIUC) CS374 29 Spring 2020 29 / 32



Rice theorem

The above proofs were somewhat repetitious...
...they imply a more general result.

Theorem 12 (Rice’s Theorem.)

Suppose that L is a language of Turing machines; that is, each word
in L encodes a TM. Furthermore, assume that the following two
properties hold.

(a) Membership in L depends only on the Turing machine’s
language, i.e. if L(M) = L(N) then 〈M〉 ∈ L⇔ 〈N〉 ∈ L.

(b) The set L is “non-trivial,” i.e. L 6= ∅ and L does not contain all
Turing machines.

Then L is a undecidable.

Miller, Hassanieh (UIUC) CS374 30 Spring 2020 30 / 32



Rice theorem

Miller, Hassanieh (UIUC) CS374 31 Spring 2020 31 / 32



Rice theorem

Miller, Hassanieh (UIUC) CS374 32 Spring 2020 32 / 32


	Reductions
	Halting
	Emptiness
	Equality
	Regularity

