Undecidability II: More problems via reductions

Lecture 25
Friday, April 10, 2020
\text{TM} = \text{Turing machine} = \text{program.}
Definition 1

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can always stop and output whether $w \in L$ or $w \notin L$.

(Usually defined using TM not programs. But equivalent.)
Definition 1

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can always stop and output whether $w \in L$ or $w \notin L$.

(Usually defined using TM not programs. But equivalent.)
Definition 1

Language \(L \subseteq \Sigma^* \) is undecidable if no program \(P \), given \(w \in \Sigma^* \) as input, can always stop and output whether \(w \in L \) or \(w \notin L \).

(Usually defined using TM not programs. But equivalent.)
The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$A_{TM} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \right\}.$$
The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$A_{TM} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \right\}.$$

Definition 2

A **decider** for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \Sigma^*$ whether or not $w \in L$.

A language that has a decider is **decidable**.
The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$$

Definition 2

A **decider** for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \Sigma^*$ whether or not $w \in L$.

A language that has a decider is **decidable**.

Turing proved the following:

Theorem 3

A_{TM} is undecidable.
The following language is undecidable

$$\mathcal{A}_{TM} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \right\}.$$
Part I

Reductions
Meta definition: Problem \(A \) **reduces** to problem \(B \), if given a solution to \(B \), then it implies a solution for \(A \). Namely, we can solve \(B \) then we can solve \(A \). We will denote this by \(A \implies B \).
Reduction

Meta definition: Problem **A reduces** to problem **B**, if given a solution to **B**, then it implies a solution for **A**. Namely, we can solve **B** then we can solve **A**. We will denote this by **A** \implies **B**.

Definition 4

oracle **ORAC** for language **L** is a function that receives as a word **w**, returns **TRUE** $\iff w \in L$.

Miller, Hassanieh (UIUC)
CS374
Spring 2020
Reduction

Meta definition: Problem **A** reduces to problem **B**, if given a solution to **B**, then it implies a solution for **A**. Namely, we can solve **B** then we can solve **A**. We will denote this by \(A \implies B \).

Definition 4

oracle ORAC for language **L** is a function that receives as a word **w**, returns \(\text{TRUE} \iff w \in L \).

Definition 5

A language **X** reduces to a language **Y**, if one can construct a **TM** decider for **X** using a given oracle **ORAC_Y** for **Y**. We will denote this fact by \(X \implies Y \).
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.

3. **L**: language of **B**.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
3. **L**: language of **B**.
4. Assume **L** is decided by **TM** **M**.

Create a decider for known undecidable problem **A** using **M**.

Result in decider for **A** (i.e., **A** _TM M_).

Contradiction **A** is not decidable.

Thus, **L** must be not decidable.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
3. **L**: Language of B.
4. Assume L is decided by TM M.
5. Create a decider for known undecidable problem A using M.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
3. **L**: language of **B**.
4. Assume **L** is decided by **TM** **M**.
5. Create a decider for known undecidable problem **A** using **M**.
6. Result in decider for **A** (i.e., **A_{TM}**).
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
3. **L**: language of **B**.
4. Assume **L** is decided by **TM M**.
5. Create a decider for known undecidable problem **A** using **M**.
6. Result in decider for **A** (i.e., **A_{TM}**).
7. Contradiction **A** is not decidable.
Reduction proof technique

1. **B**: Problem/language for which we want to prove undecidable.
3. **L**: language of **B**.
4. Assume **L** is decided by **TM M**.
5. Create a decider for known undecidable problem **A** using **M**.
6. Result in decider for **A** (i.e., **A_{TM}**).
7. Contradiction **A** is not decidable.
8. Thus, **L** must be not decidable.
Lemma 6

Let \(X \) and \(Y \) be two languages, and assume that \(X \equiv Y \). If \(Y \) is decidable then \(X \) is decidable.

Proof.

Let \(T \) be a decider for \(Y \) (i.e., a program or a \(TM \)). Since \(X \) reduces to \(Y \), it follows that there is a procedure \(T_{X|Y} \) (i.e., decider) for \(X \) that uses an oracle for \(Y \) as a subroutine. We replace the calls to this oracle in \(T_{X|Y} \) by calls to \(T \). The resulting program \(T_X \) is a decider and its language is \(X \). Thus \(X \) is decidable (or more formally, \(TM \) decidable).
Lemma 7

Let X and Y be two languages, and assume that $X \Rightarrow Y$. If X is undecidable then Y is undecidable.
The halting problem

Language of all pairs $\langle M, w \rangle$ such that M halts on w:

$$A_{\text{Halt}} = \left\{ \langle M, w \rangle \bigg| M \text{ is a TM and } M \text{ stops on } w \right\}.$$
The halting problem

Language of all pairs \(\langle M, w \rangle \) such that \(M \) \textbf{halts} on \(w \):

\[
A_{\text{Halt}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ stops on } w \right\}.
\]

Similar to language already known to be undecidable:

\[
A_{\text{TM}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \right\}.
\]
On way to proving that Halting is undecidable...

Lemma 8

The language A_{TM} reduces to A_{Halt}. Namely, given an oracle for A_{Halt} one can build a decider (that uses this oracle) for A_{TM}.

Miller, Hassanieh (UIUC)
CS374
Spring 2020
Proof of lemma

Proof.

Let $\text{ORAC}_{\text{Halt}}$ be the given oracle for A_{Halt}. We build the following decider for A_{TM}.

Decider for A_{TM}:

\[
\begin{align*}
\text{res} & \leftarrow \text{ORAC}_{\text{Halt}}(\langle M, w \rangle) \\
\text{// if } M \text{ does not halt on } w \text{ then reject.} \\
\text{if } \text{res} = \text{reject} & \text{ then reject.} \\
\text{// } M \text{ halts on } w \text{ since } \text{res} = \text{accept} \\
\text{// Simulating } M \text{ on } w \text{ terminates in finite time.} \\
\text{res} & \leftarrow \text{Simulate } M \text{ on } w \\
\text{return } \text{res}.
\end{align*}
\]

This procedure always returns and as such it is a decider for A_{TM}.

Miller, Hassanieh (UIUC) CS374 14 Spring 2020 14 / 32
One way to proving that Halting is undecidable...

Proof of lemma

Proof.

Let $\text{ORAC}_{\text{Halt}}$ be the given oracle for A_{Halt}. We build the following decider for A_{TM}.

$$\text{Decider-}A_{\text{TM}}\left(\langle M, w \rangle\right)$$

$$\text{res } \leftarrow \text{ORAC}_{\text{Halt}}\left(\langle M, w \rangle\right)$$
One way to proving that Halting is undecidable...

Proof of lemma

Proof.

Let $\text{ORAC}_{\text{Halt}}$ be the given oracle for A_{Halt}. We build the following decider for A_{TM}.

Decider-$A_{\text{TM}}\left(\langle M, w \rangle \right)$

$$res \leftarrow \text{ORAC}_{\text{Halt}}\left(\langle M, w \rangle \right)$$

// if M does not halt on w then reject.

if $res = \text{reject}$ then

halt and reject.
One way to proving that Halting is undecidable...

Proof of lemma

Proof.

Let $\text{ORAC}_{\text{Halt}}$ be the given oracle for A_{Halt}. We build the following decider for A_{TM}.

\[
\text{Decider-}A_{\text{TM}}(\langle M, w \rangle) \\
\text{res } \leftarrow \text{ORAC}_{\text{Halt}}(\langle M, w \rangle) \\
\text{// if } M \text{ does not halt on } w \text{ then reject.} \\
\text{if } \text{res} = \text{reject} \text{ then} \\
\quad \text{halt and reject.} \\
\text{// } M \text{ halts on } w \text{ since } \text{res} = \text{accept.} \\
\text{// Simulating } M \text{ on } w \text{ terminates in finite time.} \\
\text{res}_2 \leftarrow \text{Simulate } M \text{ on } w. \\
\text{return } \text{res}_2.
\]

This procedure always return and as such its a decider for A_{TM}. \square
The Halting problem is not decidable

Theorem 9

The language A_{Halt} is not decidable.

Proof.

Assume, for the sake of contradiction, that A_{Halt} is decidable. As such, there is a TM, denoted by TM_{Halt}, that is a decider for A_{Halt}. We can use TM_{Halt} as an implementation of an oracle for A_{Halt}, which would imply by Lemma 8 that one can build a decider for A_{TM}. However, A_{TM} is undecidable. A contradiction. It must be that A_{Halt} is undecidable.
The same proof by figure...

... if A_{Halt} is decidable, then A_{TM} is decidable, which is impossible.
Part III

Emptiness
The language of empty languages

$$E_{TM} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \right\}.$$
The language of empty languages

\[E_{TM} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \right\}. \]

\(T_{TM_{ETM}} \): Assume we are given this decider for \(E_{TM} \).

Need to use \(T_{TM_{ETM}} \) to build a decider for \(A_{TM} \).

Decider for \(A_{TM} \) is given \(M \) and \(w \) and must decide whether \(M \) accepts \(w \).
The language of empty languages

1. \(E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \).

2. \(TM_{ETM} \): Assume we are given this decider for \(E_{TM} \).

3. Need to use \(TM_{ETM} \) to build a decider for \(A_{TM} \).

4. Decider for \(A_{TM} \) is given \(M \) and \(w \) and must decide whether \(M \) accepts \(w \).

5. Idea: hard-code \(w \) into \(M \), creating a \(TM \) \(M_w \) which runs \(M \) on the fixed string \(w \).

6. \(TM \) \(M_w \):
 1. Input = \(x \) (which will be ignored)
 2. Simulate \(M \) on \(w \).
 3. If the simulation accepts, accept. If the simulation rejects, reject.
Given program $\langle M \rangle$ and input w...

...can output a program $\langle M_w \rangle$.

The program M_w simulates M on w. And accepts/rejects accordingly.

$\text{EmbedString}(\langle M, w \rangle)$ input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.

What is $L(M_w)$?

Since M_w ignores input x.. language M_w is either Σ^* or \emptyset. It is Σ^* if M accepts w, and it is \emptyset if M does not accept w.

Embedding strings...

1. Given program $\langle M \rangle$ and input w...
2. ...can output a program $\langle M_w \rangle$.
3. The program M_w simulates M on w. And accepts/rejects accordingly.
4. $\text{EmbedString}(\langle M, w \rangle)$ input two strings $\langle M \rangle$ and w, and output a string encoding $(TM) \langle M_w \rangle$.
5. What is $L(M_w)$?
Embedding strings...

1. Given program $\langle M \rangle$ and input w...
2. ...can output a program $\langle M_w \rangle$.
3. The program M_w simulates M on w. And accepts/rejects accordingly.
4. EmbedString($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.
5. What is $L(M_w)$?
6. Since M_w ignores input x. language M_w is either Σ^* or \emptyset. It is Σ^* if M accepts w, and it is \emptyset if M does not accept w.
Emptiness is undecidable

Theorem 10

The language E_{TM} is undecidable.

1. Assume (for contradiction), that E_{TM} is decidable.
2. TM_{ETM} be its decider.
3. Build decider $\text{AnotherDecider-} A_{TM}$ for A_{TM}:

 \[
 \text{AnotherDecider-} A_{TM}(\langle M, w \rangle) \\
 \langle M_w \rangle \leftarrow \text{EmbedString}(\langle M, w \rangle) \\
 r \leftarrow TM_{ETM}(\langle M_w \rangle). \\
 \text{if } r = \text{accept then} \\
 \quad \text{return reject} \\
 \quad // TM_{ETM}(\langle M_w \rangle) \text{ rejected its input} \\
 \text{return accept}
 \]
Consider the possible behavior of $\text{AnotherDecider-}A_{\text{TM}}$ on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, $\text{AnotherDecider-}A_{\text{TM}}$ rejects its input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So $\text{AnotherDecider-}A_{\text{TM}}$ accepts $\langle M, w \rangle$.
Consider the possible behavior of AnotherDecider-A_{TM} on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, AnotherDecider-A_{TM} rejects its input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So AnotherDecider-A_{TM} accepts $\langle M, w \rangle$.

\implies AnotherDecider-A_{TM} is decider for A_{TM}.

But A_{TM} is undecidable...
Emptiness is undecidable...

Proof continued

Consider the possible behavior of $\text{AnotherDecider-}A_{\text{TM}}$ on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, $\text{AnotherDecider-}A_{\text{TM}}$ rejects its input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So $\text{AnotherDecider-}A_{\text{TM}}$ accepts $\langle M, w \rangle$.

$\implies \text{AnotherDecider-}A_{\text{TM}}$ is decider for A_{TM}.

But A_{TM} is undecidable...

...must be assumption that ETM is decidable is false.
AnotherDecider-A_{TM} never actually runs the code for M_w. It hands the code to a function TM_{ETM} which analyzes what the code would do if run it. So it does not matter that M_w might go into an infinite loop.
Part IV

Equality
Equality is undecidable

$$EQ_{TM} = \left\{ \langle M, N \rangle \mid M \text{ and } N \text{ are TM's and } L(M) = L(N) \right\}.$$

Lemma 11

The language EQ_{TM} is undecidable.
Proof

Suppose that we had a decider \texttt{DeciderEqual} for \(EQ_{TM} \). Then we can build a decider for \(E_{TM} \) as follows:

\textbf{TM} \(R \):

1. Input = \(\langle M \rangle \)
2. Include the (constant) code for a \(TM \ T \) that rejects all its input. We denote the string encoding \(T \) by \(\langle T \rangle \).
3. Run \texttt{DeciderEqual} on \(\langle M, T \rangle \).
4. If \texttt{DeciderEqual} accepts, then accept.
5. If \texttt{DeciderEqual} rejects, then reject.
Part V

Regularity
Many undecidable languages

1. Almost any property defining a TM language induces a language which is undecidable.
2. Proofs all have the same basic pattern.
Many undecidable languages

Almost any property defining a TM language induces a language which is undecidable.

proofs all have the same basic pattern.

Regularity language:

$\text{Regular}_\text{TM} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \right\}.$

DeciderRegL: Assume TM decider for Regular_TM.

Reduction from halting requires to turn problem about deciding whether a $\text{TM} M$ accepts w (i.e., is $w \in A_{\text{TM}}$) into a problem about whether some TM accepts a regular set of strings.
Given M and w, consider the following TM M'_w:

$\text{TM } M'_w$:

(i) Input = x
(ii) If x has the form $a^n b^n$, halt and accept.
Given M and w, consider the following TM M'_w:

TM M'_w:

1. **Input** = x
2. If x has the form $a^n b^n$, halt and accept.
3. Otherwise, simulate M on w.
4. If the simulation accepts, then accept.
5. If the simulation rejects, then reject.
Given M and w, consider the following TM M'_w:

TM M'_w:

(i) Input $= x$
(ii) If x has the form $a^n b^n$, halt and accept.
(iii) Otherwise, simulate M on w.
(iv) If the simulation accepts, then accept.
(v) If the simulation rejects, then reject.

not executing M'_w!

feed string $\langle M'_w \rangle$ into DeciderRegL
Given M and w, consider the following TM M'_w:

TM M'_w:

(i) Input = x

(ii) If x has the form $a^n b^n$, halt and accept.

(iii) Otherwise, simulate M on w.

(iv) If the simulation accepts, then accept.

(v) If the simulation rejects, then reject.

not executing M'_w!

feed string $\langle M'_w \rangle$ into DeciderRegL

EmbedRegularString: program with input $\langle M \rangle$ and w, and outputs $\langle M'_w \rangle$, encoding the program M'_w.
Given M and w, consider the following TM M'_w:

TM M'_w:

(i) Input = x

(ii) If x has the form $a^n b^n$, halt and accept.

(iii) Otherwise, simulate M on w.

(iv) If the simulation accepts, then accept.

(v) If the simulation rejects, then reject.

not executing M'_w!

feed string $\langle M'_w \rangle$ into **DeciderRegL**

EmbedRegularString: program with input $\langle M \rangle$ and w, and outputs $\langle M'_w \rangle$, encoding the program M'_w.

If M accepts w, then any x accepted by M'_w: $L(M'_w) = \Sigma^*$.

If M does not accept w, then $L(M'_w) = \{a^n b^n \mid n \geq 0\}$.
Proof continued...

1. $a^n b^n$ is not regular...

2. Use DeciderRegL on M'_w to distinguish these two cases.

3. Note - cooked M'_w to the decider at hand.

4. A decider for A_{TM} as follows.

 \[
 \text{YetAnotherDecider-} A_{TM}(\langle M, w \rangle) \\
 \langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle) \\
 r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle). \\
 \text{return } r
 \]

5. If DeciderRegL accepts $\implies L(M'_w)$ regular (its Σ^*)
Proof continued...

1. $a^n b^n$ is not regular...

2. Use DeciderRegL on M'_w to distinguish these two cases.

3. Note - cooked M'_w to the decider at hand.

4. A decider for A_{TM} as follows.

 YetAnotherDecider-$A_{TM} (<M, w>)$

 $<M'_w> \leftarrow \text{EmbedRegularString} (<M, w>)$

 $r \leftarrow \text{DeciderRegL}(<M'_w>).$

 return r

5. If DeciderRegL accepts $\implies L(M'_w)$ regular (its Σ^*) $\implies M$ accepts w. So YetAnotherDecider-A_{TM} should accept $<M, w>$.
Proof continued...

1. \(a^n b^n\) is not regular...
2. Use \textbf{DeciderRegL} on \(M'_w\) to distinguish these two cases.
3. Note - cooked \(M'_w\) to the decider at hand.
4. A decider for \(A_{TM}\) as follows.

\[
\text{YetAnotherDecider-} A_{TM}(\langle M, w \rangle)
\]
\[
\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)
\]
\[
r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle).
\]
\[\text{return } r\]

5. If \textbf{DeciderRegL} accepts \(\Rightarrow L(M'_w)\) regular (its \(\Sigma^*\)) \(\Rightarrow\) \(M\) accepts \(w\). So \textbf{YetAnotherDecider-} \(A_{TM}\) should accept \(\langle M, w \rangle\).
6. If \textbf{DeciderRegL} rejects \(\Rightarrow L(M'_w)\) is not regular \(\Rightarrow\) \(L(M'_w) = a^n b^n\)
1. \(a^n b^n\) is not regular...

2. Use \texttt{DeciderRegL} on \(M'_w\) to distinguish these two cases.

3. Note - cooked \(M'_w\) to the decider at hand.

4. A decider for \(A_{TM}\) as follows.

\[
\text{YetAnotherDecider-} A_{TM}(\langle M, w \rangle) \\
\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle) \\
r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle). \\
\text{return } r
\]

5. If \texttt{DeciderRegL} accepts \(\implies L(M'_w) \) regular (its \(\Sigma^*\)) \(\implies M\) accepts \(w\). So \texttt{YetAnotherDecider-} A_{TM} should accept \(\langle M, w \rangle\).

6. If \texttt{DeciderRegL} rejects \(\implies L(M'_w) \) is not regular \(\implies L(M'_w) = a^n b^n \implies M\) does not accept \(w\) \(\implies \) \texttt{YetAnotherDecider-} A_{TM} should reject \(\langle M, w \rangle\).
Rice theorem

The above proofs were somewhat repetitious...
...they imply a more general result.

Theorem 12 (Rice’s Theorem.)

Suppose that L is a language of Turing machines; that is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

(a) Membership in L depends only on the Turing machine’s language, i.e. if $L(M) = L(N)$ then $\langle M \rangle \in L \iff \langle N \rangle \in L$.

(b) The set L is “non-trivial,” i.e. $L \neq \emptyset$ and L does not contain all Turing machines.

Then L is undecidable.
Rice theorem
Rice theorem