Algorithms & Models of Computation CS/ECE 374 B, Spring 2020

Undecidability II: More problems via reductions

Lecture 25 Friday, April 10, 2020

LATEXed: January 19, 2020 04:28

1/32

Turing machines...

TM = Turing machine = program.

Undecidability

Definition 1

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can **always stop** and output whether $w \in L$ or $w \notin L$.

(Usually defined using TM not programs. But equivalent.

Undecidability

Definition 1

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can **always stop** and output whether $w \in L$ or $w \notin L$.

(Usually defined using $\mathbf{T}\mathbf{M}$ not programs. But equivalent.

Undecidability

Definition 1

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can **always stop** and output whether $w \in L$ or $w \notin L$.

(Usually defined using TM not programs. But equivalent.

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$\mathbf{A}_{\mathrm{TM}} = \left\{ \langle M, w
angle \; \Big| \; M \; \text{is a TM} \; \text{and} \; M \; \text{accepts} \; w
ight\}.$$

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$\mathbf{A}_{\mathrm{TM}} = \left\{ \langle \boldsymbol{M}, \boldsymbol{w} \rangle \; \middle| \; \boldsymbol{M} \text{ is a TM and } \boldsymbol{M} \text{ accepts } \boldsymbol{w} \right\}.$$

Definition 2

A decider for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \Sigma^*$ whether or not $w \in L$.

A language that has a decider is **decidable**.

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$\mathbf{A}_{\mathrm{TM}} = \left\{ \langle \boldsymbol{M}, \boldsymbol{w} \rangle \; \middle| \; \boldsymbol{M} \text{ is a TM and } \boldsymbol{M} \text{ accepts } \boldsymbol{w} \right\}.$$

Definition 2

A decider for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \Sigma^*$ whether or not $w \in L$.

A language that has a decider is **decidable**. Turing proved the following:

Theorem 3 A_{TM} is undecidable. Miller, Hassanieh (UIUC) CS374 4 Spring 2020 4 / 32

$$\mathbf{A}_{\mathrm{TM}} = \left\{ \langle \boldsymbol{M}, \boldsymbol{w}
angle \; \middle| \; \boldsymbol{M} \; \text{is a TM and} \; \boldsymbol{M} \; \text{accepts} \; \boldsymbol{w}
ight\}.$$

Part I

Reductions

Reduction

Meta definition: Problem **A reduces** to problem **B**, if given a solution to **B**, then it implies a solution for **A**. Namely, we can solve **B** then we can solve **A**. We will denote this by $A \implies B$.

Reduction

Meta definition: Problem **A reduces** to problem **B**, if given a solution to **B**, then it implies a solution for **A**. Namely, we can solve **B** then we can solve **A**. We will denote this by $A \implies B$.

Definition 4

oracle ORAC for language L is a function that receives as a word w, returns TRUE $\iff w \in L$.

Reduction

Meta definition: Problem **A reduces** to problem **B**, if given a solution to **B**, then it implies a solution for **A**. Namely, we can solve **B** then we can solve **A**. We will denote this by $A \implies B$.

Definition 4

oracle ORAC for language L is a function that receives as a word w, returns TRUE $\iff w \in L$.

Definition 5

A language X reduces to a language Y, if one can construct a TM decider for X using a given oracle $ORAC_Y$ for Y. We will denote this fact by $X \implies Y$.

1 B: Problem/language for which we want to prove undecidable.

- **O** B: Problem/language for which we want to prove undecidable.
- **2** Proof via reduction. Result in a proof by contradiction.

- **B**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **1**: language of **B**.

- **B**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **1**: language of **B**.
- Assume L is decided by TM M.

- **B**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **1**: language of **B**.
- Assume L is decided by TM M.
- Solution Create a decider for known undecidable problem A using M.

- **B**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **1**: language of **B**.
- Assume L is decided by TM M.
- Screate a decider for known undecidable problem A using M.
- Result in decider for A (i.e., A_{TM}).

- **B**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **1**: language of **B**.
- Assume L is decided by TM M.
- Screate a decider for known undecidable problem A using M.
- **O** Result in decider for **A** (i.e., A_{TM}).
- Ontradiction A is not decidable.

- **B**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **1**: language of **B**.
- Assume L is decided by TM M.
- Screate a decider for known undecidable problem A using M.
- Result in decider for A (i.e., A_{TM}).
- Ontradiction A is not decidable.
- Thus, L must be not decidable.

Lemma 6

Let X and Y be two languages, and assume that $X \implies Y$. If Y is decidable then X is decidable.

Proof.

Let T be a decider for Y (i.e., a program or a TM). Since X reduces to Y, it follows that there is a procedure $T_{X|Y}$ (i.e., decider) for Xthat uses an oracle for Y as a subroutine. We replace the calls to this oracle in $T_{X|Y}$ by calls to T. The resulting program T_X is a decider and its language is X. Thus X is decidable (or more formally TM decidable).

The countrapositive...

Lemma 7

Let X and Y be two languages, and assume that $X \implies Y$. If X is undecidable then Y is undecidable.

Part II

Halting

The halting problem

Language of all pairs $\langle M, w \rangle$ such that *M* halts on *w*:

$$A_{\mathrm{Halt}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ stops on } w
ight\}.$$

The halting problem

Language of all pairs $\langle M, w \rangle$ such that **M** halts on w:

$$A_{\mathrm{Halt}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ stops on } w \right\}.$$

Similar to language already known to be undecidable:

$$\mathbf{A}_{\mathrm{TM}} = \left\{ \langle M, w
angle \; \Big| \; M \; \text{is a TM and} \; M \; ext{accepts} \; w
ight\}.$$

On way to proving that Halting is undecidable...

Lemma 8

The language A_{TM} reduces to A_{Halt} . Namely, given an oracle for A_{Halt} one can build a decider (that uses this oracle) for A_{TM} .

Proof.

Let $ORAC_{Halt}$ be the given oracle for A_{Halt} . We build the following decider for A_{TM} .

Proof.

Let $ORAC_{Halt}$ be the given oracle for A_{Halt} . We build the following decider for A_{TM} .

 $\begin{array}{l} \textbf{Decider-} \mathbf{A}_{\mathsf{TM}} \Big(\langle \boldsymbol{M}, \boldsymbol{w} \rangle \Big) \\ \boldsymbol{\textit{res}} \leftarrow \mathsf{ORAC}_{\textit{Halt}} \Big(\langle \boldsymbol{M}, \boldsymbol{w} \rangle \Big) \end{array}$

Proof.

Let $ORAC_{Halt}$ be the given oracle for A_{Halt} . We build the following decider for A_{TM} .

```
Decider-A_{\mathsf{TM}}(\langle M, w \rangle)

res \leftarrow \mathsf{ORAC}_{Halt}(\langle M, w \rangle)

// if M does not halt on w then reject.

if res = reject then

halt and reject.
```

Proof.

Let $ORAC_{Halt}$ be the given oracle for A_{Halt} . We build the following decider for A_{TM} .

```
 \begin{array}{l} \text{Decider-A}_{\mathsf{TM}}\Big(\langle M,w\rangle\Big) \\ \hline \textit{res} \leftarrow \mathsf{ORAC}_{\textit{Halt}}\Big(\langle M,w\rangle\Big) \\ // \text{ if } \textit{M} \text{ does not halt on } \textit{w} \text{ then reject.} \\ \hline \textit{if } \textit{res} = \text{reject then} \\ & \text{halt and reject.} \\ // \textit{M} \text{ halts on } \textit{w} \text{ since } \textit{res} = \text{accept.} \\ // \textit{Simulating } \textit{M} \text{ on } \textit{w} \text{ terminates in finite time.} \\ \hline \textit{res}_2 \leftarrow \text{Simulate } \textit{M} \text{ on } \textit{w}. \\ \hline \textit{return } \textit{res}_2. \end{array}
```

This procedure always return and as such its a decider for A_{TM} .

The Halting problem is not decidable

Theorem 9

The language A_{Halt} is not decidable.

Proof.

Assume, for the sake of contradiction, that A_{Halt} is decidable. As such, there is a TM, denoted by TM_{Halt} , that is a decider for A_{Halt} . We can use TM_{Halt} as an implementation of an oracle for A_{Halt} , which would imply by Lemma 8 that one can build a decider for A_{TM} . However, A_{TM} is undecidable. A contradiction. It must be that A_{Halt} is undecidable.

The same proof by figure...

... if A_{Halt} is decidable, then A_{TM} is decidable, which is impossible.

Part III

Emptiness

The language of empty languages

•
$$E_{\text{TM}} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \right\}.$$

The language of empty languages

•
$$E_{\mathrm{TM}} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \right\}.$$

- **2** TM_{ETM} : Assume we are given this decider for E_{TM} .
- 3 Need to use TM_{ETM} to build a decider for A_{TM} .
- Decider for A_{TM} is given *M* and *w* and must decide whether *M* accepts *w*.

The language of empty languages

- $E_{\text{TM}} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \right\}.$
- **2** TM_{ETM} : Assume we are given this decider for E_{TM} .
- **3** Need to use TM_{ETM} to build a decider for A_{TM} .
- Oecider for A_{TM} is given *M* and *w* and must decide whether *M* accepts *w*.
- Idea: hard-code w into M, creating a TM M_w which runs M on the fixed string w.
- TM *M*_w:
 - Input = x (which will be ignored)
 - Simulate M on w.
 - If the simulation accepts, accept. If the simulation rejects, reject.

Embedding strings...

- Given program $\langle M \rangle$ and input w...
- \odot ... can output a program $\langle M_w \rangle$.
- The program M_w simulates M on w. And accepts/rejects accordingly.
- EmbedString($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.

Embedding strings...

- Given program $\langle M \rangle$ and input w...
- \odot ... can output a program $\langle M_w \rangle$.
- The program M_w simulates M on w. And accepts/rejects accordingly.
- EmbedString($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.
- What is L(M_w)?

Embedding strings...

- Given program $\langle M \rangle$ and input w...
- 2 ...can output a program $\langle M_w \rangle$.
- The program M_w simulates M on w. And accepts/rejects accordingly.
- EmbedString($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.
- What is $L(M_w)$?
- Since M_w ignores input x.. language M_w is either Σ* or Ø.
 It is Σ* if M accepts w, and it is Ø if M does not accept w.

Emptiness is undecidable

Theorem 10

The language $E_{\rm TM}$ is undecidable.

- **(**) Assume (for contradiction), that E_{TM} is decidable.
- TM_{ETM} be its decider.
- **3** Build decider AnotherDecider- A_{TM} for A_{TM} :

AnotherDecider- $A_{TM}(\langle M, w \rangle)$ $\langle M_w \rangle \leftarrow \text{EmbedString}(\langle M, w \rangle)$ $r \leftarrow TM_{ETM}(\langle M_w \rangle)$. if r = accept thenreturn reject $// TM_{ETM}(\langle M_w \rangle)$ rejected its input return accept

Emptiness is undecidable... Proof continued

Consider the possible behavior of **AnotherDecider**- A_{TM} on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, AnotherDecider-A_{TM} rejects its input $\langle M, w \rangle$.
- If *TM_{ETM}* accepts ⟨*M_w*⟩, then *L(M_w*) is not empty. This implies that *M* accepts *w*. So AnotherDecider-A_{TM} accepts ⟨*M*, *w*⟩.

Consider the possible behavior of **AnotherDecider**- A_{TM} on the input $\langle M, w \rangle$.

- If *TM_{ETM}* accepts (*M_w*), then *L*(*M_w*) is empty. This implies that *M* does not accept *w*. As such, AnotherDecider-A_{TM} rejects its input (*M*, *w*).
- If *TM_{ETM}* accepts ⟨*M_w*⟩, then *L*(*M_w*) is not empty. This implies that *M* accepts *w*. So AnotherDecider-A_{TM} accepts ⟨*M*, *w*⟩.
- \implies AnotherDecider-A_{TM} is decider for A_{TM}.

But \mathbf{A}_{TM} is undecidable...

Consider the possible behavior of **AnotherDecider**- A_{TM} on the input $\langle M, w \rangle$.

- If *TM_{ETM}* accepts (*M_w*), then *L*(*M_w*) is empty. This implies that *M* does not accept *w*. As such, AnotherDecider-A_{TM} rejects its input (*M*, *w*).
- If *TM_{ETM}* accepts ⟨*M_w*⟩, then *L*(*M_w*) is not empty. This implies that *M* accepts *w*. So AnotherDecider-A_{TM} accepts ⟨*M*, *w*⟩.

\implies AnotherDecider-A_{TM} is decider for A_{TM}.

But A_{TM} is undecidable...

...must be assumption that \boldsymbol{E}_{TM} is decidable is false.

Emptiness is undecidable via diagram

AnotherDecider- A_{TM} never actually runs the code for M_w . It hands the code to a function TM_{ETM} which analyzes what the code would do if run it. So it does not matter that M_w might go into an infinite loop.

Part IV

Equality

$$EQ_{\mathrm{TM}} = \left\{ \langle M, N \rangle \mid M \text{ and } N \text{ are } \mathrm{TM}' \text{s and } L(M) = L(N) \right\}.$$

Lemma 11

The language EQ_{TM} is undecidable.

Proof

Proof.

Suppose that we had a decider **DeciderEqual** for EQ_{TM} . Then we can build a decider for E_{TM} as follows:

TM **R**:

- **1** Input = $\langle M \rangle$
- Include the (constant) code for a TM T that rejects all its input. We denote the string encoding T by (T).
- **3** Run **DeciderEqual** on $\langle M, T \rangle$.
- If DeciderEqual accepts, then accept.
- If DeciderEqual rejects, then reject.

$\mathsf{Part}\ \mathsf{V}$

Regularity

Many undecidable languages

- Almost any property defining a TM language induces a language which is undecidable.
- proofs all have the same basic pattern.

Many undecidable languages

- Almost any property defining a TM language induces a language which is undecidable.
- optimize proofs all have the same basic pattern.
- Segularity language: $\operatorname{Regular_{TM}} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \right\}.$
- DeciderRegL: Assume TM decider for $Regular_{TM}$.
- Seduction from halting requires to turn problem about deciding whether a TM M accepts w (i.e., is w ∈ A_{TM}) into a problem about whether some TM accepts a regular set of strings.

- Given M and w, consider the following TM M'_w : TM M'_w :
 - (i) Input = \boldsymbol{x}
 - (ii) If **x** has the form **a**ⁿ**b**ⁿ, halt and accept.

- Given *M* and *w*, consider the following TM *M*'_w:
 TM *M*'_w:
 - (i) Input = \mathbf{x}
 - (ii) If **x** has the form **a**ⁿ**b**ⁿ, halt and accept.
 - (iii) Otherwise, simulate **M** on **w**.
 - (iv) If the simulation accepts, then accept.
 - (v) If the simulation rejects, then reject.

- Given *M* and *w*, consider the following TM *M'_w*: TM *M'_w*:
 - (i) Input = \mathbf{x}
 - (ii) If **x** has the form **a**ⁿ**b**ⁿ, halt and accept.
 - (iii) Otherwise, simulate **M** on **w**.
 - (iv) If the simulation accepts, then accept.
 - (v) If the simulation rejects, then reject.
- Inot executing M'_w!
- feed string $\langle M'_w \rangle$ into **DeciderRegL**

- Given *M* and *w*, consider the following TM *M'_w*: TM *M'_w*:
 - (i) Input = \mathbf{x}
 - (ii) If **x** has the form **a**ⁿ**b**ⁿ, halt and accept.
 - (iii) Otherwise, simulate **M** on **w**.
 - (iv) If the simulation accepts, then accept.
 - (v) If the simulation rejects, then reject.
- Inot executing M'_w!
- feed string $\langle M'_w \rangle$ into **DeciderRegL**
- EmbedRegularString: program with input $\langle M \rangle$ and w, and outputs $\langle M'_w \rangle$, encoding the program M'_w .

- Given *M* and *w*, consider the following TM *M'_w*: TM *M'_w*:
 - (i) Input = \mathbf{x}
 - (ii) If **x** has the form **a**ⁿ**b**ⁿ, halt and accept.
 - (iii) Otherwise, simulate **M** on **w**.
 - (iv) If the simulation accepts, then accept.
 - (v) If the simulation rejects, then reject.
- Inot executing M'_w!
- feed string $\langle M'_w \rangle$ into **DeciderRegL**
- EmbedRegularString: program with input $\langle M \rangle$ and w, and outputs $\langle M'_w \rangle$, encoding the program M'_w .
- **5** If *M* accepts *w*, then any *x* accepted by M'_w : $L(M'_w) = \Sigma^*$.

• If M does not accept w, then $L(M'_w) = \{a^n b^n \mid n \ge 0\}$.

- aⁿbⁿ is not regular...
- **2** Use **DeciderRegL** on M'_{w} to distinguish these two cases.
- Sote cooked M'_w to the decider at hand.
- A decider for A_{TM} as follows. • YetAnotherDecider- $A_{TM}(\langle M, w \rangle)$ $\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)$ $r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle)$. return r

• If DeciderRegL accepts $\implies L(M'_w)$ regular (its Σ^*)

- aⁿbⁿ is not regular...
- **2** Use **DeciderRegL** on M'_{w} to distinguish these two cases.
- Note cooked M'_w to the decider at hand.
- A decider for A_{TM} as follows. • YetAnotherDecider- $A_{TM}(\langle M, w \rangle)$ $\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)$ $r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle)$. return r
- **5** If **DeciderRegL** accepts $\implies L(M'_w)$ regular (its Σ^*) $\implies M$ accepts w. So **YetAnotherDecider**- A_{TM} should accept $\langle M, w \rangle$.

- aⁿbⁿ is not regular...
- **2** Use **DeciderRegL** on M'_{w} to distinguish these two cases.
- Note cooked M'_w to the decider at hand.
- A decider for A_{TM} as follows. • YetAnotherDecider- $A_{TM}(\langle M, w \rangle)$ $\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)$ $r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle)$. return r
- **5** If **DeciderRegL** accepts $\implies L(M'_w)$ regular (its Σ^*) $\implies M$ accepts w. So **YetAnotherDecider**- A_{TM} should accept $\langle M, w \rangle$.
- If **DeciderRegL** rejects $\implies L(M'_w)$ is not regular $\implies L(M'_w) = a^n b^n$

- aⁿbⁿ is not regular...
- **2** Use **DeciderRegL** on M'_{w} to distinguish these two cases.
- Solution Note cooked M'_{w} to the decider at hand.
- A decider for A_{TM} as follows. • YetAnotherDecider- $A_{TM}(\langle M, w \rangle)$ $\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)$ $r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle)$. return r
- **5** If **DeciderRegL** accepts $\implies L(M'_w)$ regular (its Σ^*) $\implies M$ accepts w. So **YetAnotherDecider**- A_{TM} should accept $\langle M, w \rangle$.
- If DeciderRegL rejects $\implies L(M'_w)$ is not regular $\implies L(M'_w) = a^n b^n \implies M$ does not accept $w \implies$ YetAnotherDecider-A_{TM} should reject $\langle M, w \rangle$.

The above proofs were somewhat repetitious... ...they imply a more general result.

Theorem 12 (Rice's Theorem.)

Suppose that L is a language of Turing machines; that is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

- (a) Membership in L depends only on the Turing machine's language, i.e. if L(M) = L(N) then $\langle M \rangle \in L \Leftrightarrow \langle N \rangle \in L$.
- (b) The set L is "non-trivial," i.e. L ≠ Ø and L does not contain all Turing machines.

Then L is a undecidable.

Rice theorem

Rice theorem