Turing Machines & Computability
Course Trajectory

• Seen lots of algorithms, what can be done.
• Interested in limitations (algorithmic; time)
• Need more precise definitions of
  – what is a computer / computation
  – what does “polynomial time” mean
• Turing Machines useful in answering these questions
“Most General” computer?

• DFAs are simple model of computation.
  – Accept only the regular languages.
• Is there a kind of computer that can accept any language, or compute any function?
• Recall counting argument:
  – \(\{ f \mid f : \mathbb{N} \to \{0,1\} \}\) (just the set of boolean functions)
    (a) countably infinite
    (b) uncountably infinite
  – \(\{P : P\text{ is a finite length computer program}\}\) is
    (a) countably infinite
    (b) uncountably infinite
Most General Computer

• If not all functions are computable, *which are*?
• Is there a “most general” model of computer?
• What languages can they recognize?
David Hilbert

• Early 1900s – crisis in math foundations
  – attempts to formalize resulted in paradoxes, etc.

• 1920, Hilbert’s Program:
  “mechanize” mathematics

• Finite axioms, inference rules
  turn crank, determine truth
  needed: axioms consistent & complete
Kurt Gödel

• German logician, at age 25 (1931) proved: “There are true statements that can’t be proved” (i.e., “no” to Hilbert)
• Shook the foundations of
  – mathematics
  – philosophy
  – science
  – everything

This slide recycled from Lecture 1
Alan Turing

- British mathematician
  - cryptanalysis during WWII
  - arguably, father of AI, Theory
  - several books, movies
- Defined “computer”, “program” and (1936) provided foundations for investigating fundamental question of what is computable, what is not computable.

This slide recycled from Lecture 1
• DFA with (infinite) tape.
• One move: read, write, move, change state.
Formal Definition

\[ M = (Q, \Sigma, \Gamma, \delta, q_0, B, q_{\text{accept}}, q_{\text{reject}}), \text{ where:} \]

- \( Q \) is a finite set of states
- \( \Sigma \) is a finite input alphabet
- \( \delta \) as defined on next page
- \( \Gamma \) is a finite tape alphabet. \( (\Sigma \text{ a subset of } \Gamma) \)
- \( q_0 \) is the initial state (in \( Q \))
- \( B \) in \( \Gamma - \Sigma \) is the blank symbol
- \( q_{\text{accept}}, q_{\text{reject}} \) are unique accept, reject states in \( Q \)
Transition Function

\[ \delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\} \]

- current state
- symbol scanned
- new state
- symbol to write
- direction to move on tape

\[ \delta(q, a) = (p, b, L) \]

from state \( q \), on reading \( a \):
- go to state \( p \)
- write \( b \)
- move head \textbf{Left}
\[ \delta(q, a) = (p, b, L) \]

Note: we allow \( \delta(q, a) \) to be undefined for some choices of \( q, a \) (in which case, \( M \) “crashes”)

Graphical Representation

- State \( q \) transitions to state \( p \) on input \( a/b, L \)
**ID: Instantaneous Description**

- Contains all necessary information to capture “state of the computation”
- Includes
  - state $q$ of $M$
  - location of read/write head
  - contents of tape from left edge to rightmost nonblank (or to head, whichever is rightmost)
ID: Instantaneous Description

\[ X_1 X_2 \ldots X_{i-1} q X_i X_{i+1} \ldots X_n \quad (q \text{ in } Q, \ X_i \text{ in } \Gamma) \]
Relation “$\rightarrow$” on IDs

If $\delta(q, X_i) = (p, Y, L)$, then

$$X_1 X_2 \ldots X_{i-1} q X_i X_{i+1} \ldots X_n \rightarrow X_1 X_2 \ldots X_{i-2} p X_{i-1} Y X_{i+1}$$

If $\delta(q, X_i)$ is undefined, then there is no next ID.

If $M$ tries to move off left edge, there is no next ID (in both cases, the machine “crashes”).
Capturing many moves...

Define $\rightarrow^*$ as the reflexive, transitive closure of $\rightarrow$

Thus, $\text{ID}_1 \rightarrow^* \text{ID}_2$ iff $M$, when run from $\text{ID}_1$, necessarily reaches $\text{ID}_2$ after some finite number of moves.

Initial ID: $q_0w$  (more often, assume ... $q_0w$)
Accepting ID: $\alpha_1q_{\text{accept}}\alpha_2$ for any $\alpha_1, \alpha_2$ in $\Gamma^*$

(reaches the accepting state with any random junk left on the tape)
Definition of Acceptance

$M$ accepts $w$ if for some $\alpha_1, \alpha_2$ in $\Gamma^*$,

$q_0w \rightarrow^* \alpha_1 q_{accept} \alpha_2$

$M$ accepts if at any time it enters the accept state
Regardless of whether or not
it has scanned all of the input
it has moved back and forth many times
it has completely erased or replaced $w$ on the tape

$L(M) = \{w \mid M \text{ accepts } w\}$
Non-accepting computation

\( M \) doesn’t accept \( w \) if any of the following occur:
- \( M \) enters \( q_{\text{reject}} \)
- \( M \) moves off left edge of tape
- \( M \) has no applicable next transition
- \( M \) continues computing forever

If \( M \) accepts – we can tell: it enters \( q_{\text{accept}} \)
If \( M \) doesn’t accept – we may not be able to tell

(c.f. “Halting problem” – later)
“Recursive” vs “Recursively Enumerable”

• **Recursively Enumerable (r.e.) Languages:**
  
  \[ \{ L \mid \text{there is a TM } M \text{ such that } L(M) = L \} \]

• **Recursive Languages** (also called “decidable”)
  
  \[ \{ L \mid \text{there is a TM } M \text{ that halts for all } w \text{ in } \Sigma^* \text{ and such that } L(M) = L \} \]

Recursive languages: nice; run \( M \) on \( w \) and it will eventually enter either \( q_{accept} \) or \( q_{reject} \)

r.e. languages: not so nice; can know if \( w \) in \( L \), but not necessarily if \( w \) is not in \( L \).
Fundamental Questions

• Which languages are r.e.?
• Which are recursive?
• What is the difference?
• What properties make a language decidable?
Machine accepting \( \{ a^n b^n c^n \mid n \geq 1 \} \)

(This technique is known as “checking off symbols”)
Machine to add two n-bit numbers

(“high-level” description)

• Assume input is $a_1a_2...a_n#b_1b_2...b_n$

• Pre-process phase
  – sweep right, replacing 0 with 0’ and 1 with 1’

• Main loop:
  – erase last bit $b_i$, and remember it
  – move left to corresponding bit $a_i$
  – add the bits, plus carry, overwrite $a_i$ with answer
  – remember carry, move right to next (last) bit $b_{i-1}$
Program Trace (some missing steps)

\[ \begin{align*}
\text{Program} & \quad \text{Trace} \\
\$10011\#11001 & \quad \$1\text{'0}'\text{'0}'\text{'1}'\text{'0}'\text{'1}'\text{'1}'\text{'0}'\text{'0}'\text{'0}'\text{'1}' \quad b = 1 \quad c = 0 \\
\$1\text{'0}'\text{'0}'\text{'1}'\text{'1}'\#1'1'0'0'0'1' & \quad \$1\text{'0}'\text{'0}'\text{'1}'\text{'0}'\text{'1}'\text{'1}'\text{'0}'\text{'0}'\text{'0}' \quad b = 0 \quad c = 1 \\
\$1\text{'0}'\text{'0}'\text{'1}'\text{'1}'\#1'1'0'0'0' & \quad \$1\text{'0}'\text{'0}'\text{'1}'\text{'1}'\text{'0}'\text{'0}' \quad c = 1 \\
\$1\text{'0}'\text{'0}'\text{'1}'\text{'1}'\#1'1'0'0'0' & \quad \$1\text{'0}'\text{'0}'\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0}'0\text{'0'} etc
\end{align*} \]
Computing Functions with TMs

- number $n$ represented in unary by $0^n$
  
  (well, really $0^{n+1}$ so we can represent 0...)

- $M(n)$ definition: “output of $M$ on input $n$”:
  IF $q_00^n \rightarrow^* q_{\text{halt}} 0^m$ then $M(n) = m$.

- Every TM $M$ computes some function
  
  $f_M : \mathbb{N} \rightarrow \mathbb{N} \cup \{\text{undefined}\}$.

- Functions with multiple inputs and outputs:
  $M(x,y,z) = (r,s)$ means $q_00^x\#0^y\#0^z \rightarrow^* q_{\text{halt}} 0^r\#0^s$
“Easily” Computed Functions

• addition
• multiplication
• subtraction (max \{0, x-y\})
• any function you have an “algorithm” for...
**Computable Functions**

- A (partial) function $f: \mathbb{N} \rightarrow \mathbb{N} \cup \{\text{undefined}\}$ is said to be *computable* iff for some TM $M$,
  for all $x$ in $\mathbb{N}$, $f(x) = M(x)$ when $f(x)$ is defined
  “$f$ is a (partial) recursive function)”

- A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is a *total recursive function*
  iff for all $x$ in $\mathbb{N}$, $f(x) = M(x)$ for every $x$.

- If $M$ computes a partial recursive function, it may not halt on some inputs. If $M$ computes a total recursive function, it must halt for all inputs.
Why only $f: \mathbb{N} \rightarrow \mathbb{N}$?

Q: What about negatives, rationals, reals?

A: We can encode anything as a natural number.

-5: 100000

$p/q$: $0^p110^q$, $(p/q) + (a/b)$ as $0^{pb+aq}110^{bq}$

- reals to given precision, or symbolically

- Intuition: ANY function can be coded as a function from $\mathbb{N}$ to $\mathbb{N}$
Some TM programming tricks

- checking off symbols
- shifting over
- using finite control memory
- subroutine calls
“Extensions” of TMs

- 2-way infinite tape
- multiple tracks
- multiple tapes
- multi-dimensional TMs
- nondeterministic TMs
- --- bells & whistles

Goal:
Convince you of the power of the basic model
Checking off symbols

• Use additional tape symbols to represent a “checked-off” character.
• E.g., for each symbol $a$ in $\Gamma$, also include “$a\checkmark$” to represent a marked $a$.
• We essentially did this using $A$ for checked $a$, or $0'$ for checked 0, in our previous examples.
Shifting over

- Sometimes need extra cells
- Can shift-over by any number of cells
  - Shift-by-k: Use states to remember previous $|\Gamma|^k$ symbols:
    - $b_1 b_2 \ldots b_k$
    - $b_2 \ldots b_{k-1} a$

   plus states to begin and end the process
Using finite control

• just like DFAs
• can use tuples to store different types of info
• E.g., $\{a^n b^n c^n \mid n = 1 \pmod{4} \text{ and } n = 2 \pmod{7}\}$

States: $(q, i, j)$ where:
- $q$: state from TM for $\{a^n b^n c^n \mid n \geq 1\}$
- $i$: counter mod 4
- $j$: counter mod 7

etc.

In general, can store any finite information in states
Subroutine calls

- soon
“Extensions” of TMs: 2-way infinite tape

Simulate with 1-way infinite tape...

Must modify transitions appropriately
- remember in finite control if negative or positive
- if positive, $R \rightarrow RR; L \rightarrow LL$
- if negative, $R \rightarrow LL; L \rightarrow RR$
- must mark left edge & deal with 0 cell differently
**Extension: multiple tracks**

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

M can address any particular track in the cell it is scanning

Can simulate 4 tracks with a single track machine, using extra “stacked” characters:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>1</td>
<td>0</td>
<td>b</td>
<td>c</td>
<td>1</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>2</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

infinite tape →
Multiple tracks

M: $\delta(q, -,0,-,-) = (p, -, -, -, 1, R)$

"If in state $q$ reading 0 on second track, then go to state $p$, write 1 on fourth track, and move right"

Then in $M'$ $\delta(q, \begin{array}{c} x \\ 0 \\ y \\ z \end{array}) = (p, \begin{array}{c} x \\ 0 \\ y \\ 1 \end{array}, R)$

for every $x, y, z$ in $\Gamma$
Extension: multiple tapes

$k$-tape TM
- $k$ different (2-way infinite) tapes
- $k$ different independently controllable heads
- input initially on tape 1; tapes 2, 3, ..., $k$, blank.
- single move:
  - read symbols under all heads
  - print (possibly different) symbols under heads
  - move all heads (possibly different directions)
  - go to new state
### k-tape TM transition function

\[ \delta(q, a_1, a_2, \ldots, a_k) = (p, b_1, b_2, \ldots, b_k, D_1, D_2, \ldots, D_k) \]

- Symbols scanned on the \( k \) different tapes
- Symbols to be written on the \( k \) different tapes
- Directions to be moved (\( D_i \) is one of L, R, S)

Utility of multiple tapes makes programming a whole lot easier

\[ \begin{array}{cccccccccc}
$ & 1 & 0 & 0 & 1 & 0 & \# & 1 & 0 & 0 & 1 & 0
\end{array} \]

*is input string of form \( w\#w \) ?*
\( \Omega(n^2) \) steps provably required

\( \approx \frac{3n}{2} \) steps easily programmed
Can’t compute more with $k$ tapes

Theorem: If $L$ is accepted by a $k$-tape TM $M$, then $L$ is accepted by some 1-tape TM $M'$.

Intuition: $M'$ uses $2k$ tracks to simulate $M$

BUT....
$M$ has $k$ heads!

How can $M'$ be in $k$ places at once?
Snapshot of simulation \((k = 2)\)

- **M**: Tape 1
- **M’**: Tape 2

Track \(2i-1\) holds tape \(i\). Track \(2i\) holds position of head \(i\)
To make a move, $M'$ does:

Phase 1: Sweep from leftmost edge to rightmost “✓” on any track, noting symbols ✓’ed, and what track they are on. Save this info in finite control.

Implementation:
States of form $(q, a_1, a_2, ..., a_k)$, where each $a_i$ is either “?” or the symbol scanned under the $i^{th}$ head of $M$. 
Simulation Example (k=2)

To do a “state $q$” move, $M'$ begins in state $(q, ?, ?)$

(“I don’t know what $M$ is scanning on either tape”)

$M'$ moves right over unchecked symbols until...

$$\delta'( (q,?,?), 0 ) = ( (q,?,1), 0, R )$$

$$\delta'( (q,?,?), 1 ) = ( (q,?,1), 1, R )$$

Continue moving right until state $(q,a_1,a_2)$ is reached, with neither $a_i = "?"$
**Simulation Example (cont.)**

**Phase 2:** $M'$ is in state $(q,0,1)$.

If $\delta(q,0,1) = (p,0,0,L,R)$, $M'$ goes to state $q_{p,0,0,L,R}$ to record changes.

**Sweeping left,** $\delta'(q_{p,0,0,L,R}, 0) = (q_{p,0,✓,L,4}, L,R)$

*Symbol has been changed on next move, put ✓ on track 4*

*Continue sweep*

**In next cell,** $\delta'(q_{p,0,✓,L,4}, y) = q_{p,0,✓,L,✓, L}$

*Then, $M'$ continues left to make changes to tracks 1 & 2.*
Simulation Example (cont.)

When $M'$ finally reaches state $q_p, ✓, ✓, ✓, ✓$, it then immediately goes to state $(p, ?, ?)$ and begins the sweep right to collect the symbols being scanned again.

Many details have been left out.

Thus, each move of $M$ requires $M'$ to do a complete sweep across, and back.

Not hard to show that if $M$ takes $t$ steps to complete its computation, then $M'$ takes $O(t^2)$ steps.
Subroutine calls

Mechanism for $M_1$ to “call” $M_2$ on an argument

- Rename states so that $M_1$ and $M_2$ have no common states except $q_{\text{call}}$ and $q_{\text{return}}$
- Goal: $M_1$ calls from state $q_{\text{call}}$ returns to $q_{\text{return}}$
- Rename init. state of $M_2$ as $q_{\text{call}},$ halt state $q_{\text{return}}$
- $M_1$ sets up argument $a_1a_2...a_n$ for $M_2:$

$\begin{array}{cccccccc}
\$ & \cdot & \# & a_1 & a_2 & a_3 & \cdot & \cdot & a_n \\
\end{array}$

$M_1$ work space

$M_2$ work space
• M₂ runs, and when done:

\[ M_1 \text{ work space} \]

\[ M_2 \text{ work space} \]

\[ q_{\text{call}} \]

\[ M_1 \text{ work space} \]

\[ M_2 \text{ returned value} \]

\[ q_{\text{return}} \]
• Can be more elaborate, and return to specified state $q_j$

```
$ \cdot \cdot \cdot \cdot \# 1 0 0 1 \# a_1 \cdot \cdot a_n
```

- $M_1$ saved computation
- Binary for $j = 9$ (desired return state)
- $M_2$ computation

• $q_{\text{return}}$ now goes to special sequence of states designed to read binary 1011 (or whatever) and then transition to state 9 (or whatever)
  - This can actually be done with a DFA
Multidimensional TMs

- Operates on work grid of $k$ semi-infinite dimensions.
- Input initially along first axis.
- Transitions specify which of $2k$ directions to move.
Theorem: For all $k$, if $L$ is accepted by a $k$-dim TM, then $L$ is accepted by some 1-dim TM

Proof:

• At any time, $M$ for $L$ has only operated on a finite number of cells.

• In particular, in $x$ moves, it could not have moved out of the $k$-dim hypercube of side $x$.

• “Linearize” the hypercube by computing offsets, exactly how arrays are stored in computer memory.
### Multidimensional TMs (cont)

- Example, $k = 2$

$$A[i,j] = 4(i-1) + j$$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

- If TM moves outside of current cube, remap memory to a cube with double the current sidelength, recompute layout based on new offsets