b

Algorithms & Models of Computation CS/ECE 374 B, Spring 2020

Strings and Languages

Lecture 1b Wednesday, January 22, 2020

LATEXed: January 19, 2020 04:09

Part I

Strings

String Definitions

Definition

- An alphabet is a finite set of symbols. For example
 Σ = {0,1}, Σ = {a, b, c, ..., z},
 Σ = {(moveforward), (moveback)} are alphabets.
- A string/word over Σ is a finite sequence of symbols over Σ.
 For example, '0101001', 'string', '(moveback)(rotate90)'
- 3 ϵ is the empty string.
- The length of a string w (denoted by |w|) is the number of symbols in w. For example, |101| = 3, |e| = 0
- For integer n ≥ 0, Σⁿ is set of all strings over Σ of length n.
 Σ* is th set of all strings over Σ.

Formally

Formally strings are defined recursively/inductively:

- ϵ is a string of length **0**
- ax is a string if $a \in \Sigma$ and x is a string. The length of ax is 1 + |x|

The above definition helps prove statements rigorously via induction.

• Alternative recursive definiton useful in some proofs: xa is a string if $a \in \Sigma$ and x is a string. The length of xa is 1 + |x|

Convention

- a, b, c, \ldots denote elements of Σ
- w, x, y, z, ... denote strings
- A, B, C, ... denote sets of strings

4

Much ado about nothing

- ϵ is a string containing no symbols. It is not a set
- {e} is a set containing one string: the empty string. It is a set, not a string.
- Ø is the empty set. It contains no strings.
- {Ø} is a set containing one element, which itself is a set that contains no elements.

Concatenation and properties

If x and y are strings then xy denotes their concatenation.
 Formally we define concatenation recursively based on definition of strings:

•
$$xy = y$$
 if $x = \epsilon$

•
$$xy = a(wy)$$
 if $x = aw$

Sometimes xy is written as $x \cdot y$ to explicitly note that \cdot is a binary operator that takes two strings and produces another string.

- concatenation is associative: (uv)w = u(vw) and hence we write uvw
- not commutative: uv not necessarily equal to vu
- identity element: $\epsilon u = u\epsilon = u$

Substrings, prefix, suffix, exponents

Definition

v is substring of w iff there exist strings x, y such that w = xvy.

- If $x = \epsilon$ then v is a prefix of w
- If $y = \epsilon$ then v is a suffix of w
- If w is a string then wⁿ is defined inductively as follows:
 wⁿ = ε if n = 0
 wⁿ = wwⁿ⁻¹ if n > 0

Example: $(blah)^4 = blahblahblahblah$.

Set Concatenation

Definition

Given two sets A and B of strings (over some common alphabet Σ) the concatenation of A and B is defined as:

 $AB = \{xy \mid x \in A, y \in B\}$

Example: $A = \{fido, rover, spot\}, B = \{fluffy, tabby\}$ then $AB = \{fidofluffy, fidotabby, roverfluffy, \ldots\}$.

Σ^{*} and languages

Definition

Σⁿ is the set of all strings of length n. Defined inductively as follows:

 $\Sigma^{n} = \{\epsilon\} \text{ if } n = 0$ $\Sigma^{n} = \Sigma\Sigma^{n-1} \text{ if } n > 0$

2 $\Sigma^* = \bigcup_{n \ge 0} \Sigma^n$ is the set of all finite length strings

3 $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$ is the set of non-empty strings.

Σ^{*} and languages

Definition

Σⁿ is the set of all strings of length n. Defined inductively as follows:

 $\Sigma^n = \{\epsilon\}$ if n = 0 $\Sigma^n = \Sigma\Sigma^{n-1}$ if n > 0

2 $\Sigma^* = \bigcup_{n \ge 0} \Sigma^n$ is the set of all finite length strings

3 $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$ is the set of non-empty strings.

Definition

A language *L* is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Exercise

Answer the following questions taking $\Sigma = \{0, 1\}$.

- What is Σ⁰?
- 2 How many elements are there in Σ^3 ?
- Output to the state of the
- What is the length of the longest string in Σ*? Does Σ* have strings of infinite length?
- If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- **(**) Let u be an arbitrary string Σ^* . What is ϵu ? What is $u\epsilon$?
- Is uv = vu for every $u, v \in \Sigma^*$?
- Solution is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

Canonical order and countability of strings

Definition

An set A is countably infinite if there is a bijection f between the natural numbers and A.

Alternatively: A is countably infinite if A is an infinite set and there enumeration of elements of A

Canonical order and countability of strings

Definition

An set A is countably infinite if there is a bijection f between the natural numbers and A.

Alternatively: A is countably infinite if A is an infinite set and there enumeration of elements of A

Theorem

 Σ^* is countably infinite for every finite Σ .

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ). Example: $\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, \ldots\}$. $\{a, b, c\}^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, \ldots\}$

Question: Is $\Sigma^* \times \Sigma^* = \{(x, y) \mid x, y \in \Sigma^*\}$ countably infinite?

Exercise

Question: Is $\Sigma^* \times \Sigma^* = \{(x, y) \mid x, y \in \Sigma^*\}$ countably infinite?

Question: Is $\Sigma^* \times \Sigma^* \times \Sigma^* = \{(x, y, z) \mid x, y, x \in \Sigma^*\}$ countably infinite?

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition

The reverse w^R of a string w is defined as follows: • $w^R = \epsilon$ if $w = \epsilon$ • $w^R = x^R a$ if w = ax for some $a \in \Sigma$ and string x

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition

The reverse w^R of a string w is defined as follows:

•
$$w^R = \epsilon$$
 if $w = \epsilon$

•
$$w^R = x^R a$$
 if $w = ax$ for some $a \in \Sigma$ and string x

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Example: $(dog \bullet cat)^R = (cat)^R \bullet (dog)^R = tacgod$.

Principle of mathematical induction

Induction is a way to prove statements of the form $\forall n \ge 0, P(n)$ where P(n) is a statement that holds for integer n.

Example: Prove that $\sum_{i=0}^{n} i = n(n+1)/2$ for all n.

Induction template:

- Base case: Prove P(0)
- Induction hypothesis: Let k > 0 be an arbitrary integer. Assume that P(n) holds for any $k \le n$.
- Induction Step: Prove that P(n) holds, for n = k + 1.

Structured induction

- Unlike simple cases we are working with...
- Ininduction proofs also work for more complicated "structures".
- Such as strings, tuples of strings, graphs etc.
- See class notes on induction for details.

Proving the theorem

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

```
Proof: by induction.
On what?? |uv| = |u| + |v|?
|u|?
|v|?
```

What does it mean to say "induction on |u|"?

By induction on **u**

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| means that we are proving the following. **Base case:** Let u be an arbitrary stirng of length 0. $u = \epsilon$ since there is only one such string. Then $(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$

By induction on **u**

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| means that we are proving the following. **Base case:** Let u be an arbitrary stirng of length $\mathbf{0}$. $u = \epsilon$ since there is only one such string. Then $(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$ **Induction hypothesis:** $\forall n \ge \mathbf{0}$, for any string u of length n (for all strings $v \in \Sigma^*$, $(uv)^R = v^R u^R$).

By induction on **u**

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| means that we are proving the following. **Base case:** Let u be an arbitrary stirng of length $\mathbf{0}$. $u = \epsilon$ since there is only one such string. Then $(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$ **Induction hypothesis:** $\forall n \ge \mathbf{0}$, for any string u of length n (for all strings $v \in \Sigma^*$, $(uv)^R = v^R u^R$). Note that we did not assume anything about v, hence the statement holds for all $v \in \Sigma^*$.

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

 $(uv)^R =$

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

$$(uv)^{R} = ((ay)v)^{R}$$
$$= (a(yv))^{R}$$
$$= (yv)^{R}a^{R}$$
$$= (v^{R}y^{R})a^{R}$$
$$= v^{R}(y^{R}a^{R})$$
$$= v^{R}(ay)^{R}$$
$$= v^{R}u^{R}$$

Induction on **v**

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |v| means that we are proving the following.

Induction on **v**

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |v| means that we are proving the following. **Induction hypothesis:** $\forall n \ge 0$, for any string v of length n (for all strings $u \in \Sigma^*$, $(uv)^R = v^R u^R$).

Induction on **v**

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |v| means that we are proving the following. **Induction hypothesis:** $\forall n \ge 0$, for any string v of length n (for all strings $u \in \Sigma^*$, $(uv)^R = v^R u^R$).

Base case: Let v be an arbitrary stirng of length **0**. $v = \epsilon$ since there is only one such string. Then

$$(uv)^{R} = (u\epsilon)^{R} = u^{R} = \epsilon u^{R} = \epsilon^{R} u^{R} = v^{R} u^{R}$$

- Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |v| = n > 0 we have v = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

$$(uv)^{R} = (u(ay))^{R}$$

= $((ua)y)^{R}$
= $y^{R}(ua)^{R}$
= ??

- Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |v| = n > 0 we have v = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

$$(uv)^{R} = (u(ay))^{R}$$

= $((ua)y)^{R}$
= $y^{R}(ua)^{R}$
= ??

Cannot simplify $(ua)^R$ using inductive hypothesi. Can simplify if we extend base case to include n = 0 and n = 1. However, n = 1 itself requires induction on |u|!

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following.

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following.

Induction hypothesis:

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following.

Induction hypothesis: $\forall n \geq 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \leq n$, $(uv)^R = v^R u^R$.

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following.

Induction hypothesis: $\forall n \geq 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \leq n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary stirngs such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Induction on $|\mathbf{u}| + |\mathbf{v}|$

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following.

Induction hypothesis: $\forall n \geq 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \leq n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary stirngs such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Inductive stepe: n > 0. Let u, v be arbitrary strings such that |u| + |v| = n.

Part II

Languages

Miller, Hassanieh (UIUC)

Definition

A language *L* is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Languages

Definition

A language *L* is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Standard set operations apply to languages.

- For languages A, B the concatenation of A, B is $AB = \{xy \mid x \in A, y \in B\}.$
- For languages A, B, their union is $A \cup B$, intersection is $A \cap B$, and difference is $A \setminus B$ (also written as A B).
- For language $A \subseteq \Sigma^*$ the complement of A is $\overline{A} = \Sigma^* \setminus A$.

Exponentiation, Kleene star etc

Definition

For a language $L \subseteq \Sigma^*$ and $n \in \mathbb{N}$, define L^n inductively as follows.

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L \bullet (L^{n-1}) & \text{if } n > 0 \end{cases}$$

And define $L^* = \bigcup_{n \ge 0} L^n$, and $L^+ = \bigcup_{n \ge 1} L^n$

Exercise

Problem

Answer the following questions taking $A, B \subseteq \{0, 1\}^*$.

- Is $\epsilon = \{\epsilon\}$? Is $\emptyset = \{\epsilon\}$?
- **2** What is $\emptyset \cdot A$? What is $A \cdot \emptyset$?
- **(a)** What is $\{\epsilon\} \bullet A$? And $A \bullet \{\epsilon\}$?
- If |A| = 2 and |B| = 3, what is $|A \cdot B|$?

Exercise

Problem

Consider languages over $\Sigma = \{0, 1\}$.

- What is Ø⁰?
- 2 If |L| = 2, then what is $|L^4|$?
- **3** What is \emptyset^* , $\{\epsilon\}^*$, ϵ^* ?
- For what L is L* finite?
- What is \emptyset^+ , $\{\epsilon\}^+$, ϵ^+ ?

What are we interested in computing? Mostly functions.

Informal definition: An algorithm \mathcal{A} computes a function $f: \Sigma^* \to \Sigma^*$ if for all $w \in \Sigma^*$ the algorithm \mathcal{A} on input w terminates in a finite number of steps and outputs f(w).

Examples of functions:

- Numerical functions: length, addition, multiplication, division etc
- Given graph G and s, t find shortest paths from s to t
- Given program *M* check if *M* halts on empty input
- Posts Correspondence problem

Definition

A function f over Σ^* is a boolean if $f: \Sigma^* \to \{0, 1\}$.

Definition

A function f over Σ^* is a boolean if $f : \Sigma^* \to \{0, 1\}$.

Observation: There is a bijection between boolean functions and languages.

• Given boolean function $f: \Sigma^* \to \{0, 1\}$ define language $L_f = \{w \in \Sigma^* \mid f(w) = 1\}$

Definition

A function f over Σ^* is a boolean if $f : \Sigma^* \to \{0, 1\}$.

Observation: There is a bijection between boolean functions and languages.

- Given boolean function $f: \Sigma^* \to \{0, 1\}$ define language $L_f = \{w \in \Sigma^* \mid f(w) = 1\}$
- Given language $L \subseteq \Sigma^*$ define boolean function $f: \Sigma^* \to \{0, 1\}$ as follows: f(w) = 1 if $w \in L$ and f(w) = 0 otherwise.

Language recognition problem

Definition

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

Language recognition problem

Definition

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

- Equivalent to the problem of "computing" the function f_L .
- Language recognition is same as boolean function computation
- How difficult is a function f to compute? How difficult is the recognizing L_f?

Language recognition problem

Definition

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

- Equivalent to the problem of "computing" the function f_L .
- Language recognition is same as boolean function computation
- How difficult is a function f to compute? How difficult is the recognizing L_f?

Why two different views? Helpful in understanding different aspects?

Recall:

Definition

An set A is countably infinite if there is a bijection f between the natural numbers and A.

Theorem

 Σ^* is countably infinite for every finite Σ .

The set of all languages is $\mathbb{P}(\Sigma^*)$ the power set of Σ^*

Recall:

Definition

An set A is countably infinite if there is a bijection f between the natural numbers and A.

Theorem

 Σ^* is countably infinite for every finite Σ .

The set of all languages is $\mathbb{P}(\Sigma^*)$ the power set of Σ^*

Theorem (Cantor)

 $\mathbb{P}(\mathbf{\Sigma}^*)$ is **not** countably infinite for any finite $\mathbf{\Sigma}$.

Cantor's diagonalization argument

Theorem (Cantor)

 $\mathbb{P}(\mathbb{N})$ is not countably infinite.

- Suppose ℙ(ℕ) is countable infinite. Let S₁, S₂,..., be an enumeration of all subsets of numbers.
- Let **D** be the following diagonal subset of numbers.

 $D = \{i \mid i \notin S_i\}$

Since D is a set of numbers, by assumption, D = S_j for some j.
Question: ls j ∈ D?

Consequences for Computation

- How many *C* programs are there? The set of *C* programs is countably infinite since each of them can be represented as a string over a finite alphabet.
- How many languages are there? Uncountably many!
- Hence some (in fact almost all!) languages/boolean functions do not have any *C* program to recognize them.

Questions:

Consequences for Computation

- How many *C* programs are there? The set of *C* programs is countably infinite since each of them can be represented as a string over a finite alphabet.
- How many languages are there? Uncountably many!
- Hence some (in fact almost all!) languages/boolean functions do not have any *C* program to recognize them.

Questions:

- Maybe interesting languages/functions have *C* programs and hence computable. Only uninteresting langues uncomputable?
- Why should C programs be the definition of computability?
- Ok, there are difficult problems/languages. what lanauges are computable and which have efficient algorithms?