Regular Languages and Expressions

Lecture 2
Friday, January 24, 2020
Part I

Regular Languages
Regular Languages

A class of simple but useful languages. The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\varepsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.

Regular languages are closed under the operations of union, concatenation and Kleene star.
Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then $L_1 L_2$ is regular.
Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\epsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then L_1L_2 is regular.
6. If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular. The \cdot^* operator name is Kleene star.
Regular Languages

A class of simple but useful languages. The set of regular languages over some alphabet Σ is defined inductively as:

1. \emptyset is a regular language.
2. $\{\varepsilon\}$ is a regular language.
3. $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
4. If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
5. If L_1, L_2 are regular then L_1L_2 is regular.
6. If L is regular, then $L^* = \bigcup_{n \geq 0} L^n$ is regular. The \cdot^* operator name is Kleene star.

Regular languages are closed under the operations of union, concatenation and Kleene star.
Lemma

If w is a string then $L = \{w\}$ is regular.

Example: $\{aba\}$ or $\{abbabbab\}$. Why?
Some simple regular languages

Lemma

If \(w \) is a string then \(L = \{w\} \) is regular.

Example: \(\{aba\} \) or \(\{abbabbab\} \). Why?

Lemma

Every finite language \(L \) is regular.

Examples: \(L = \{a, abaab, aba\} \). \(L = \{w \mid |w| \leq 100\} \). Why?
More Examples

- \{w \mid w \text{ is a keyword in Python program}\}
- \{w \mid w \text{ is a valid date of the form mm/dd/yy}\}
- \{w \mid w \text{ describes a valid Roman numeral}\}
 \{I, II, III, IV, V, VI, VII, VIII, IX, X, XI, \ldots\}.
- \{w \mid w \text{ contains ”CS374” as a substring}\}.
Part II

Regular Expressions
Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50’s: Stephen Kleene
 who has a star names after him.
A regular expression r over an alphabet Σ is one of the following:

Base cases:
- \emptyset denotes the language \emptyset.
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases:
- $(r_1 + r_2)$ denotes the language $R_1 \cup R_2$.
- $(r_1 r_2)$ denotes the language $R_1 R_2$.
- $(r_1)^*$ denotes the language R_1^*.

Miller, Hassanieh (UIUC) CS374 8 Spring 2020
Inductive Definition

A regular expression r over an alphabet Σ is one of the following:

Base cases:
- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$
- a denote the language $\{a\}$.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,
- $(r_1 + r_2)$ denotes the language $R_1 \cup R_2$
- $(r_1 r_2)$ denotes the language $R_1 R_2$
- $(r_1)^*$ denotes the language R_1^*
Regular Languages vs Regular Expressions

<table>
<thead>
<tr>
<th>Regular Languages</th>
<th>Regular Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>∅ regular</td>
<td>∅ denotes ∅</td>
</tr>
<tr>
<td>{ε} regular</td>
<td>ε denotes {ε}</td>
</tr>
<tr>
<td>{a} regular for $a \in \Sigma$</td>
<td>a denote {a}</td>
</tr>
<tr>
<td>$R_1 \cup R_2$ regular if both are</td>
<td>$r_1 + r_2$ denotes $R_1 \cup R_2$</td>
</tr>
<tr>
<td>R_1R_2 regular if both are</td>
<td>r_1r_2 denotes R_1R_2</td>
</tr>
<tr>
<td>R^* is regular if R is</td>
<td>$r^$ denote $R^$</td>
</tr>
</tbody>
</table>

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language.
Notation and Parenthesis

- For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

Example: $(0 + 1)$ and $(1 + 0)$ denote the same language $\{0, 1\}$
For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$

Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

Superscript $+$. For convenience, define $r^+ = rr^*$. Hence if $L(r) = R$ then $L(r^+) = R +$.

Other notation: $r + s$, $r \cup s$, $r | s$ all denote union. rs is sometimes written as $r \cdot s$.

For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$

Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

Omit parenthesis by adopting precedence order: \ast, concatenate, \pm.

Example: $r^*s + t = ((r^*)s) + t$
Notation and Parenthesis

- For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
 Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: \ast, concatenate, $+$.
 Example: $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations.
 Example: $rst = (rs)t = r(st)$,
 $r + s + t = r + (s + t) = (r + s) + t$.
Notation and Parenthesis

- For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!

 Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$

- Two regular expressions r_1 and r_2 are **equivalent** if $L(r_1) = L(r_2)$.

- Omit parenthesis by adopting precedence order: $*$, concatenate, $+$.

 Example: $r^*s + t = ((r^*)s) + t$

- Omit parenthesis by associativity of each of these operations.

 Example: $rst = (rs)t = r(st)$,

 $r + s + t = r + (s + t) = (r + s) + t$.

- **Superscript** $+$. For convenience, define $r^+ = rr^*$. Hence if $L(r) = R$ then $L(r^+) = R^+$.
For a regular expression r, $L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language! Example: $(0 + 1)$ and $(1 + 0)$ denote same language $\{0, 1\}$.

Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

Omit parenthesis by adopting precedence order: \ast, concatenate, \oplus.

Example: $r \ast s + t = ((r \ast) s) + t$

Omit parenthesis by associativity of each of these operations.

Example: $rst = (rs)t = r(st)$,
$r + s + t = r + (s + t) = (r + s) + t$.

Superscript \oplus. For convenience, define $r^\oplus = rr^\ast$. Hence if $L(r) = R$ then $L(r^\oplus) = R^\oplus$.

Other notation: $r + s$, $r \cup s$, $r|s$ all denote union. rs is sometimes written as $r \cdot s$.

Miller, Hassanieh (UIUC)
CS374 10
Spring 2020 10 / 16
Skills

- Given a language L “in mind” (say an English description) we would like to write a regular expression for L (if possible)
Given a language L “in mind” (say an English description) we would like to write a regular expression for L (if possible)

Given a regular expression r we would like to “understand” $L(r)$ (say by giving an English description)
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
Understanding regular expressions

- $(0 + 1)^*$: set of all strings over $\{0, 1\}$
- $(0 + 1)^*001(0 + 1)^*$:
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
Understanding regular expressions

- $(0 + 1)^*$: set of all strings over $\{0, 1\}$
- $(0 + 1)^*001(0 + 1)^*$: strings with 001 as substring
- $0^* + (0*10*10*10*)^*$:
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with **001** as substring
- \(0^* + (0*10*10*10*)^*\): strings with number of **1**’s divisible by **3**
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with 001 as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of 1’s divisible by 3
- \(\emptyset\):
(0 + 1)*: set of all strings over \{0, 1\}
(0 + 1)*001(0 + 1)*: strings with 001 as substring
0* + (0*10*10*10*)*: strings with number of 1’s divisible by 3
Ø0: \{\}
(0 + 1)*: set of all strings over \{0, 1\}
(0 + 1)*001(0 + 1)*: strings with 001 as substring
0* + (0*10*10*10*)*: strings with number of 1’s divisible by 3
\emptyset: \{\}
(\epsilon + 1)(01)*(\epsilon + 0):
Understanding regular expressions

- \((0 + 1)^*\): set of all strings over \(\{0, 1\}\)
- \((0 + 1)^*001(0 + 1)^*\): strings with \(001\) as substring
- \(0^* + (0^*10^*10^*10^*)^*\): strings with number of \(1\)'s divisible by 3
- \(\emptyset\): \(\{\}\)
- \((\epsilon + 1)(01)^*(\epsilon + 0)\): alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
Understanding regular expressions

- $(0 + 1)^*$: set of all strings over $\{0, 1\}$
- $(0 + 1)^*001(0 + 1)^*$: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- $\emptyset 0$: $\{\}$
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$:
Understanding regular expressions

- $(0 + 1)^*$: set of all strings over $\{0, 1\}$
- $(0 + 1)^*001(0 + 1)^*$: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- \emptyset: $\{\}$
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.
Creating regular expressions

- Bitstrings with the pattern `001` or the pattern `100` occurring as a substring

One answer:

\[(0 + 1)^* 001 (0 + 1)^* + (0 + 1)^* 100 (0 + 1)^*\]

Bitstrings with an even number of `1`'s

One answer:

\[0^* + (0^* 10^* 10^* 10^*)^*\]

Bitstrings with an odd number of `1`'s

One answer:

\[1^* 0^*\]

Bitstrings that do not contain `01` as a substring

One answer:

\[1^* 0^* \]

Bitstrings that do not contain `011` as a substring

One answer:

\[1^* 0^* (100^*)^* (1 + \epsilon)^*\]

Hard: Bitstrings with an odd number of `1`s and an odd number of `0`s.
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^* \)
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)
- bitstrings with an even number of 1’s
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: $(0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*$
- bitstrings with an even number of 1’s
 one answer: $0^* + (0^*10^*10^*)^*$

Miller, Hassanieh (UIUC)
CS374
Spring 2020
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)

- bitstrings with an odd number of 1’s
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)

- bitstrings with an odd number of 1’s
 one answer: \(r1r\) where \(r\) is solution to previous part
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s
 one answer: \(0^* + (0^*10^*10^*)^*\)

- bitstrings with an odd number of 1’s
 one answer: \(r1r\) where \(r\) is solution to previous part

- bitstrings that do not contain 01 as a substring
bitstrings with the pattern 001 or the pattern 100 occurring as a substring
one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

bitstrings with an even number of 1’s
one answer: \(0^* + (0^*10^*10^*)^*\)

bitstrings with an odd number of 1’s
one answer: \(r1r\) where \(r\) is solution to previous part

bitstrings that do not contain 01 as a substring
one answer: \(1^*0^*\)
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring
 one answer: $(0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*$

- bitstrings with an even number of 1’s
 one answer: $0^* + (0^*10^*10^*)^*$

- bitstrings with an odd number of 1’s
 one answer: $r1r$ where r is solution to previous part

- bitstrings that do not contain 01 as a substring
 one answer: 1^*0^*

- bitstrings that do not contain 011 as a substring
Creating regular expressions

- bitstrings with the pattern 001 or the pattern 100 occurring as a substring

 one answer: \((0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\)

- bitstrings with an even number of 1’s

 one answer: \(0^* + (0^*10^*10^*)^*\)

- bitstrings with an odd number of 1’s

 one answer: \(r1r\) where \(r\) is solution to previous part

- bitstrings that do not contain 01 as a substring

 one answer: \(1^*0^*\)

- bitstrings that do not contain 011 as a substring

 one answer: \(1^*0^*(100^*)^*(1 + \epsilon)\)
Creating regular expressions

- bitstrings with the pattern **001** or the pattern **100** occurring as a substring
 one answer:
 \[(0 + 1)^*001(0 + 1)^* + (0 + 1)^*100(0 + 1)^*\]

- bitstrings with an even number of **1**’s
 one answer:
 \[0^* + (0^*10^*10^*)^*\]

- bitstrings with an odd number of **1**’s
 one answer: \[r1r\] where \(r \) is solution to previous part

- bitstrings that do **not** contain **01** as a substring
 one answer: \[1^*0^*\]

- bitstrings that do **not** contain **011** as a substring
 one answer: \[1^*0^*(100^*)^*(1 + \epsilon)\]

- Hard: bitstrings with an odd number of 1s **and** an odd number of 0s.
Bit strings with odd number of 0s and 1s

The regular expression is

\[(00 + 11)^* (01 + 10) \]

\[\left(00 + 11 + (01 + 10)(00 + 11)^* (01 + 10)\right)^*\]

(Solved using techniques to be presented in the following lectures...)
Regular expression identities

- \(r^* r^* = r^* \) meaning for any regular expression \(r \),
- \(L(r^* r^*) = L(r^*) \)
- \((r^*)^* = r^* \)
- \(rr^* = r^* r \)
- \((rs)^* r = r(sr)^* \)
- \((r + s)^* = (r^* s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \ldots \)
Regular expression identities

- $r^* r^* = r^*$ meaning for any regular expression r,
 $L(r^* r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^* r$
- $(rs)^* r = r(sr)^*$
- $(r + s)^* = (r^* s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \ldots$

Question: How does one prove an identity?
Regular expression identities

- $r^* r^* = r^*$ meaning for any regular expression r,
 \[L(r^* r^*) = L(r^*) \]
- $(r^*)^* = r^*$
- $rr^* = r^* r$
- $(rs)^* r = r(sr)^*$
- $(r + s)^* = (r^* s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \ldots$

Question: How does one prove an identity?
By induction. On what?
Regular expression identities

- \(r^* r^* = r^* \) meaning for any regular expression \(r \),
 \(L(r^* r^*) = L(r^*) \)
- \((r^*)^* = r^* \)
- \(rr^* = r^* r \)
- \((rs)^* r = r(sr)^* \)
- \((r + s)^* = (r^* s^*)^* = (r^* + s^*)^* = (r + s^*)^* = \ldots \)

Question: How does one prove an identity?
By induction. On what? Length of \(r \) since \(r \) is a string obtained from specific inductive rules.
A non-regular language and other closure properties

Consider $L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}$. Theorem L is not a regular language. How do we prove it? Other questions: Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular? Suppose R_1 is regular is \bar{R}_1 (complement of R_1) regular?
A non-regular language and other closure properties

Consider \(L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\} \).

Theorem

\(L \) is not a regular language.
A non-regular language and other closure properties

Consider \(L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\} \).

Theorem

\(L \) is not a regular language.

How do we prove it?
Consider \(L = \{0^n1^n \mid n \geq 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}. \)

Theorem

\(L \) is not a regular language.

How do we prove it?

Other questions:

- Suppose \(R_1 \) is regular and \(R_2 \) is regular. Is \(R_1 \cap R_2 \) regular?
- Suppose \(R_1 \) is regular is \(\tilde{R}_1 \) (complement of \(R_1 \)) regular?