Algorithms & Models of Computation CS/ECE 374 B, Spring 2020

Kartsuba's Algorithm and Linear Time Selection

Lecture 11 Friday, February 28, 2020

LATEXed: January 19, 2020 04:16

Part I

Fast Multiplication

Multiplying Numbers

Problem Given two n-digit numbers x and y, compute their product.

Grade School Multiplication

Compute "partial product" by multiplying each digit of y with x and adding the partial products.

 $\begin{array}{r}
 3141 \\
 \times 2718 \\
 \hline
 25128 \\
 3141 \\
 21987 \\
 \underline{6282} \\
 8537238$

Time Analysis of Grade School Multiplication

- Each partial product: $\Theta(n)$
- 2 Number of partial products: $\Theta(n)$
- **3** Addition of partial products: $\Theta(n^2)$
- Total time: $\Theta(n^2)$

4

Assume n is a power of 2 for simplicity and numbers are in decimal.

Assume n is a power of 2 for simplicity and numbers are in decimal.

Assume n is a power of 2 for simplicity and numbers are in decimal.

$$x = 10^{n/2} x_L + x_R$$
 where $x_L = x_{n-1} \dots x_{n/2}$ and $x_R = x_{n/2-1} \dots x_0$

Assume n is a power of 2 for simplicity and numbers are in decimal.

- $x = 10^{n/2} x_L + x_R$ where $x_L = x_{n-1} \dots x_{n/2}$ and $x_R = x_{n/2-1} \dots x_0$
- \bigcirc Similarly $y=10^{n/2}y_L+y_R$ where $y_L=y_{n-1}\dots y_{n/2}$ and $y_R=y_{n/2-1}\dots y_0$

Example

$$1234 \times 5678 = (100 \times 12 + 34) \times (100 \times 56 + 78)$$

$$= 10000 \times 12 \times 56$$

$$+100 \times (12 \times 78 + 34 \times 56)$$

$$+34 \times 78$$

6

Assume n is a power of 2 for simplicity and numbers are in decimal.

- ② $x = 10^{n/2} x_L + x_R$ where $x_L = x_{n-1} \dots x_{n/2}$ and $x_R = x_{n/2-1} \dots x_0$
- $y = 10^{n/2} y_L + y_R$ where $y_L = y_{n-1} \dots y_{n/2}$ and $y_R = y_{n/2-1} \dots y_0$

Therefore

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

Time Analysis

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

Time Analysis

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

4 recursive multiplications of number of size n/2 each plus 4 additions and left shifts (adding enough 0's to the right)

$$T(n) = 4T(n/2) + O(n)$$
 $T(1) = O(1)$

Recursion tree analysis

$$T(n) = 4T(n/2) + O(n)$$
 $T(1) = O(1)$

Recursion tree analysis

$$T(n) = 4T(n/2) + O(n)$$
 $T(1) = O(1)$

 $T(n) = \Theta(n^2)$. No better than grade school multiplication!

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

$$(a+bi)(c+di) = ac - bd + (ad + bc)i$$

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)(a + bi)(c + di) = ac - bd + (ad + bc)i

How many multiplications do we need?

A Trick of Gauss

Carl Friedrich Gauss: 1777–1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: (a + bi) and (c + di)

$$(a+bi)(c+di) = ac - bd + (ad + bc)i$$

How many multiplications do we need?

Only 3! If we do extra additions and subtractions. Compute ac, bd, (a + b)(c + d). Then

$$(ad + bc) = (a + b)(c + d) - ac - bd$$

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

Gauss trick:
$$x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

Gauss trick:
$$x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

Gauss trick:
$$x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

Time Analysis

Running time is given by

$$T(n) = 3T(n/2) + O(n)$$
 $T(1) = O(1)$

which means

$$xy = (10^{n/2}x_L + x_R)(10^{n/2}y_L + y_R)$$

= $10^n x_L y_L + 10^{n/2}(x_L y_R + x_R y_L) + x_R y_R$

Gauss trick:
$$x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

Recursively compute only $x_L y_L$, $x_R y_R$, $(x_L + x_R)(y_L + y_R)$.

Time Analysis

Running time is given by

$$T(n) = 3T(n/2) + O(n)$$
 $T(1) = O(1)$

which means $T(n) = O(n^{\log_2 3}) = O(n^{1.585})$

Analyzing the Recurrences

- Basic divide and conquer: T(n) = 4T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^2)$.
- Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^{1+\log 1.5})$

Analyzing the Recurrences

- Basic divide and conquer: T(n) = 4T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^2)$.
- Saving a multiplication: T(n) = 3T(n/2) + O(n), T(1) = 1. Claim: $T(n) = \Theta(n^{1 + \log 1.5})$

Use recursion tree method:

- 1 In both cases, depth of recursion $L = \log n$.
- ② Work at depth i is $4^{i}n/2^{i}$ and $3^{i}n/2^{i}$ respectively: number of children at depth i times the work at each child
- **3** Total work is therefore $n \sum_{i=0}^{L} 2^{i}$ and $n \sum_{i=0}^{L} (3/2)^{i}$ respectively.

State of the Art

Schönhage-Strassen 1971: $O(n \log n \log \log n)$ time using Fast-Fourier-Transform (FFT)

Martin Fürer 2007: $O(n \log n2^{O(\log^* n)})$ time

Conjecture

There is an $O(n \log n)$ time algorithm.

Part II

Selecting in Unsorted Lists

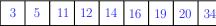
Rank of element in an array

A: an unsorted array of n integers

Definition

For $1 \le j \le n$, element of rank j is the j'th smallest element in A.

Sort of array



Problem - Selection

Input Unsorted array A of n integers and integer jGoal Find the jth smallest number in A (rank j number)

Median: $j = \lfloor (n+1)/2 \rfloor$

Problem - Selection

Input Unsorted array A of n integers and integer jGoal Find the jth smallest number in A (rank j number)

Median:
$$j = \lfloor (n+1)/2 \rfloor$$

Simplifying assumption for sake of notation: elements of \boldsymbol{A} are distinct

Algorithm I

- Sort the elements in A
- Pick jth element in sorted order

Time taken = $O(n \log n)$

Algorithm I

- Sort the elements in A
- Pick jth element in sorted order

Time taken = $O(n \log n)$

Do we need to sort? Is there an O(n) time algorithm?

Algorithm II

If j is small or n-j is small then

• Find j smallest/largest elements in A in O(jn) time. (How?)

Algorithm II

If j is small or n-j is small then

- Find j smallest/largest elements in A in O(jn) time. (How?)
- ② Time to find median is $O(n^2)$.

Divide and Conquer Approach

- Pick a pivot element a from A
- Partition A based on a.

$$A_{\text{less}} = \{x \in A \mid x \le a\} \text{ and } A_{\text{greater}} = \{x \in A \mid x > a\}$$

Divide and Conquer Approach

- Pick a pivot element a from A
- Partition A based on a.

$$A_{\text{less}} = \{x \in A \mid x \leq a\} \text{ and } A_{\text{greater}} = \{x \in A \mid x > a\}$$

 $|A_{less}| = j$: return a

19

Divide and Conquer Approach

- Pick a pivot element a from A
- Partition A based on a.

$$A_{\mathrm{less}} = \{x \in A \mid x \leq a\} \text{ and } A_{\mathrm{greater}} = \{x \in A \mid x > a\}$$

- $|A_{less}| = j: return a$
- $|A_{\rm less}| > j$: recursively find jth smallest element in $A_{\rm less}$

Divide and Conquer Approach

- Pick a pivot element a from A
- 2 Partition A based on a.

$$A_{\mathrm{less}} = \{x \in A \mid x \leq a\} \text{ and } A_{\mathrm{greater}} = \{x \in A \mid x > a\}$$

- $|A_{less}| = j: return a$
- ullet $|A_{
 m less}| > j$: recursively find jth smallest element in $A_{
 m less}$
- $|A_{less}| < j$: recursively find kth smallest element in $A_{greater}$ where $k = j |A_{less}|$.

Example

 16
 14
 34
 20
 12
 5
 3
 19
 11

Time Analysis

- Partitioning step: O(n) time to scan A
- How do we choose pivot? Recursive running time?

Time Analysis

- Partitioning step: O(n) time to scan A
- We How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Time Analysis

- Partitioning step: O(n) time to scan A
- 4 How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say A is sorted in increasing order and j = n. Exercise: show that algorithm takes $\Omega(n^2)$ time

Suppose pivot is the ℓ th smallest element where $n/4 \leq \ell \leq 3n/4$. That is pivot is approximately in the middle of A Then $n/4 \leq |A_{\text{less}}| \leq 3n/4$ and $n/4 \leq |A_{\text{greater}}| \leq 3n/4$. If we apply recursion,

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$. That is pivot is approximately in the middle of A Then $n/4 \le |A_{less}| \le 3n/4$ and $n/4 \le |A_{greater}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$. That is pivot is approximately in the middle of A. Then $n/4 \le |A_{\text{less}}| \le 3n/4$ and $n/4 \le |A_{\text{greater}}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot?

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$. That is pivot is approximately in the middle of A. Then $n/4 \le |A_{less}| \le 3n/4$ and $n/4 \le |A_{greater}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly?

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$. That is pivot is approximately in the middle of A. Then $n/4 \le |A_{\text{less}}| \le 3n/4$ and $n/4 \le |A_{\text{greater}}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$. That is pivot is approximately in the middle of A. Then $n/4 \le |A_{\text{less}}| \le 3n/4$ and $n/4 \le |A_{\text{greater}}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Can we choose pivot deterministically?

Divide and Conquer Approach

A game of medians

Idea

- **1** Break input **A** into many subarrays: $L_1, \ldots L_k$.
- Find median m_i in each subarray L_i.
- 3 Find the median x of the medians m_1, \ldots, m_k .
- Intuition: The median x should be close to being a good median of all the numbers in A.
- Use x as pivot in previous algorithm.

The input:

75	31	13	26	83	110	60	120	63	30	3	41	44	107	30	23	91	17	6	110
68	24	41	26	58	57	61	20	52	45	13	79	86	91	55	66	13	103	36	70
19	40	45	111	56	74	17	95	96	77	29	65	36	96	93	119	9	61	3	9
100	3	88	47	115	107	79	39	109	20	59	25	92	81	36	10	30	113	73	116
72	58	24	16	12	69	40	24	19	92	7	65	75	41	43	117	103	38	8	20

The input:

	75	31	13	26	83	110	60	120	63	30	3	41	44	107	30	23	91	17	6	110
Ī	68	24	41	26	58	57	61	20	52	45	13	79	86	91	55	66	13	103	36	70
	19	40	45	111	56	74	17	95	96	77	29	65	36	96	93	119	9	61	3	9
	100	3	88	47	115	107	79	39	109	20	59	25	92	81	36	10	30	113	73	116
Ī	72	58	24	16	12	69	40	24	19	92	7	65	75	41	43	117	103	38	8	20

Compute median of the medians (recursive call):

72	74	13	66
31	60	65	30
41	39	75	61
26	63	91	8
58	45	43	70

The input:

	75	31	13	26	83	110	60	120	63	30	3	41	44	107	30	23	91	17	6	110
ſ	68	24	41	26	58	57	61	20	52	45	13	79	86	91	55	66	13	103	36	70
ſ	19	40	45	111	56	74	17	95	96	77	29	65	36	96	93	119	9	61	3	9
ſ	100	3	88	47	115	107	79	39	109	20	59	25	92	81	36	10	30	113	73	116
	72	58	24	16	12	69	40	24	19	92	7	65	75	41	43	117	103	38	8	20

Compute median of the medians (recursive call):

72	74	13	66
31	60	65	30
41	39	75	61
26	63	91	8
58	45	43	70

After partition (pivot **60**):

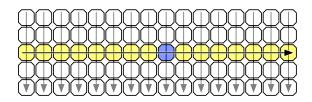
The input:

75	31	13	26	83	110	60	120	63	30	3	41	44	107	30	23	91	17	6	110
68	24	41	26	58	57	61	20	52	45	13	79	86	91	55	66	13	103	36	70
19	40	45	111	56	74	17	95	96	77	29	65	36	96	93	119	9	61	3	9
100	3	88	47	115	107	79	39	109	20	59	25	92	81	36	10	30	113	73	116
72	58	24	16	12	69	40	24	19	92	7	65	75	41	43	117	103	38	8	20

Compute median of the medians (recursive call):

72	74	13	66
31	60	65	30
41	39	75	61
26	63	91	8
58	45	43	70

After partition (pivot **60**):



Choosing the pivot

A clash of medians

- Partition array A into $\lceil n/5 \rceil$ lists of S items each. $L_1 = \{A[1], A[2], \dots, A[5]\}, L_2 = \{A[6], \dots, A[10]\}, \dots, L_i = \{A[5i+1], \dots, A[5i-4]\}, \dots, L_{\lceil n/5 \rceil} = \{A[5\lceil n/5 \rceil 4, \dots, A[n]\}.$
- ② For each i find median b_i of L_i using brute-force in O(1) time. Total O(n) time
- **3** Let $B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\}$
- Find median b of B

Choosing the pivot

A clash of medians

1 Partition array A into $\lceil n/5 \rceil$ lists of S items each. $L_1 = \{A[1], A[2], \ldots, A[5]\}, L_2 = \{A[6], \ldots, A[10]\}, \ldots, L_i = \{A[5i+1], \ldots, A[5i-4]\}, \ldots, L_{\lceil n/5 \rceil} = \{A[5\lceil n/5 \rceil - 4, \ldots, A[n]\}.$

- ② For each i find median b_i of L_i using brute-force in O(1) time. Total O(n) time
- **3** Let $B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\}$
- Find median b of B

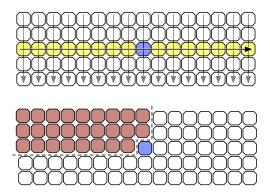
Lemma

Median of B is an approximate median of A. That is, if b is used a pivot to partition A, then $|A_{less}| \leq 7n/10 + 6$ and $|A_{greater}| < 7n/10 + 6$.

Median of Medians: Proof of Lemma

Proposition

There are at least 3n/10 - 6 elements smaller than the median of medians **b**.



Median of Medians: Proof of Lemma

Proposition

There are at least 3n/10-6 elements smaller than the median of medians **b**.

Proof.

At least half of the $\lfloor n/5 \rfloor$ groups have at least 3 elements smaller than b, except for the group containing b which has 2 elements smaller than b. Hence number of elements smaller than b is:

$$3\lfloor \frac{\lfloor n/5\rfloor + 1}{2} \rfloor - 1 \geq 3n/10 - 6$$

Median of Medians: Proof of Lemma

Proposition

There are at least 3n/10-6 elements smaller than the median of medians **b**.

Corollary

$$|A_{greater}| \leq 7n/10 + 6.$$

Via symmetric argument,

Corollary

$$|A_{less}| \leq 7n/10 + 6.$$

A storm of medians

```
 \begin{array}{l} \textbf{select}(A,\ j): \\ & \textbf{Form lists}\ \textit{L}_1,\textit{L}_2,\dots,\textit{L}_{\lceil n/5 \rceil} \ \text{where}\ \textit{L}_i = \{\textit{A}[5i-4],\dots,\textit{A}[5i]\} \\ & \textbf{Find median}\ \textit{b}_i \ \text{of each}\ \textit{L}_i \ \text{using brute-force} \\ & \textbf{Find median}\ \textit{b} \ \text{of}\ \textit{B} = \{\textit{b}_1,\textit{b}_2,\dots,\textit{b}_{\lceil n/5 \rceil}\} \\ & \textbf{Partition}\ \textit{A} \ \text{into}\ \textit{A}_{\text{less}} \ \text{and}\ \textit{A}_{\text{greater}} \ \text{using}\ \textit{b} \ \text{as pivot} \\ & \textbf{if}\ (|\textit{A}_{\text{less}}|) = \textit{j} \ \text{return}\ \textit{b} \\ & \textbf{else}\ \textbf{if}\ (|\textit{A}_{\text{less}}|) > \textit{j}) \\ & \textbf{return select}(\textit{A}_{\text{less}},\ \textit{j}) \\ & \textbf{else} \\ & \textbf{return select}(\textit{A}_{\text{greater}},\ \textit{j} - |\textit{A}_{\text{less}}|) \end{aligned}
```

A storm of medians

```
 \begin{array}{l} \textbf{select}(A,\ j): \\ & \textbf{Form lists}\ L_1, L_2, \dots, L_{\lceil n/5 \rceil} \ \text{where}\ L_i = \{A[5i-4], \dots, A[5i]\} \\ & \textbf{Find median}\ b_i \ \text{of each}\ L_i \ \text{using brute-force} \\ & \textbf{Find median}\ b \ \text{of}\ B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\} \\ & \textbf{Partition}\ A \ \text{into}\ A_{\text{less}} \ \text{and}\ A_{\text{greater}} \ \text{using}\ b \ \text{as pivot} \\ & \textbf{if}\ (|A_{\text{less}}|) = j \ \text{return}\ b \\ & \textbf{else}\ \textbf{if}\ (|A_{\text{less}}|) > j) \\ & \textbf{return select}(A_{\text{less}},\ j) \\ & \textbf{else} \\ & \textbf{return select}(A_{\text{greater}},\ j - |A_{\text{less}}|) \end{array}
```

How do we find median of **B**?

A storm of medians

```
 \begin{array}{l} \textbf{select}(A,\ j): \\ & \textbf{Form lists}\ L_1, L_2, \dots, L_{\lceil n/5 \rceil} \ \text{where}\ L_i = \{A[5i-4], \dots, A[5i]\} \\ & \textbf{Find median}\ b_i \ \text{of each}\ L_i \ \text{using brute-force} \\ & \textbf{Find median}\ b \ \text{of}\ B = \{b_1, b_2, \dots, b_{\lceil n/5 \rceil}\} \\ & \textbf{Partition}\ A \ \text{into}\ A_{\text{less}} \ \text{and}\ A_{\text{greater}} \ \text{using}\ b \ \text{as pivot} \\ & \textbf{if}\ (|A_{\text{less}}|) = j \ \text{return}\ b \\ & \textbf{else}\ \textbf{if}\ (|A_{\text{less}}|) > j) \\ & \textbf{return select}(A_{\text{less}},\ j) \\ & \textbf{else} \\ & \textbf{return select}(A_{\text{greater}},\ j - |A_{\text{less}}|) \end{array}
```

How do we find median of B? Recursively!

A storm of medians

```
 \begin{split} & \operatorname{select}(A, \ j) : \\ & \quad \text{Form lists} \ L_1, L_2, \dots, L_{\lceil n/5 \rceil} \ \text{where} \ L_i = \{A[5i-4], \dots, A[5i]\} \\ & \quad \text{Find median} \ b_i \ \text{of each} \ L_i \ \text{using brute-force} \\ & \quad B = [b_1, b_2, \dots, b_{\lceil n/5 \rceil}] \\ & \quad b = \operatorname{select}(B, \ \lceil n/10 \rceil) \\ & \quad \text{Partition} \ A \ \text{into} \ A_{\operatorname{less}} \ \text{and} \ A_{\operatorname{greater}} \ \text{using} \ b \ \text{as pivot} \\ & \quad \text{if} \ (|A_{\operatorname{less}}|) = j \ \text{return} \ b \\ & \quad \text{else} \ \text{if} \ (|A_{\operatorname{less}}|) > j) \\ & \quad \text{return select}(A_{\operatorname{less}}, \ j) \\ & \quad \text{else} \\ & \quad \text{return select}(A_{\operatorname{greater}}, \ j - |A_{\operatorname{less}}|) \end{aligned}
```

Running time of deterministic median selection

A dance with recurrences

$$T(n) \le T(\lceil n/5 \rceil) + \max\{T(|A_{less}|), T(|A_{greater})|\} + O(n)$$

Running time of deterministic median selection

A dance with recurrences

$$T(n) \le T(\lceil n/5 \rceil) + \max\{T(|A_{less}|), T(|A_{greater})|\} + O(n)$$

From Lemma,

$$T(n) \leq T(\lceil n/5 \rceil) + T(\lfloor 7n/10 + 6 \rfloor) + O(n)$$

and

$$T(n) = O(1) \qquad n < 10$$

Running time of deterministic median selection

A dance with recurrences

$$T(n) \le T(\lceil n/5 \rceil) + \max\{T(|A_{less}|), T(|A_{greater})|\} + O(n)$$

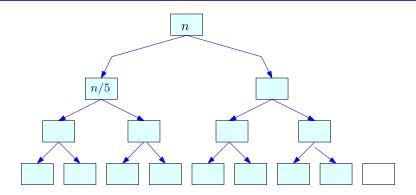
From Lemma,

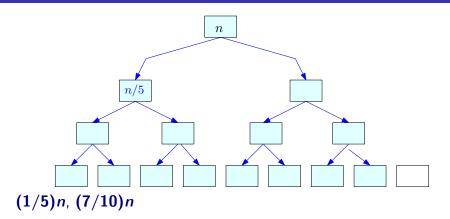
$$T(n) \leq T(\lceil n/5 \rceil) + T(\lfloor 7n/10 + 6 \rfloor) + O(n)$$

and

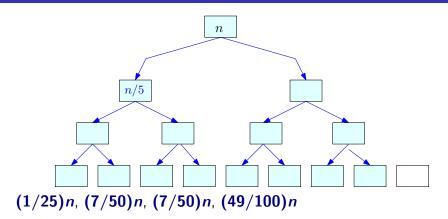
$$T(n) = O(1) \qquad n < 10$$

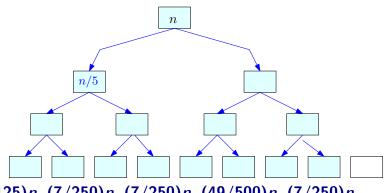
Exercise: show that T(n) = O(n)





Spring 2020





(1/125)n, (7/250)n, (7/250)n, (49/500)n, (7/250)n, (49/500)n, (49/500)n, (343/1000)n

Summary: Selection in linear time

Theorem

The algorithm select(A[1 .. n], k) computes in O(n) deterministic time the kth smallest element in A.

On the other hand, we have:

Lemma

The algorithm QuickSelect(A[1..n], k) computes the kth smallest element in A. The running time of QuickSelect is $\Theta(n^2)$ in the worst case.

Questions to ponder

- Why did we choose lists of size 5? Will lists of size 3 work?
- ② Write a recurrence to analyze the algorithm's running time if we choose a list of size k.

Median of Medians Algorithm

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

Median of Medians Algorithm

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list?

Median of Medians Algorithm

Due to:

M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan. "Time bounds for selection".

Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list? All except Vaughn Pratt!

Takeaway Points

- Recursion tree method and guess and verify are the most reliable methods to analyze recursions in algorithms.
- Recursive algorithms naturally lead to recurrences.
- Some times one can look for certain type of recursive algorithms (reverse engineering) by understanding recurrences and their behavior.