
Algorithms & Models of Computation
CS/ECE 374 B, Spring 2020

Polynomial Time Reductions
Lecture 22
April 18

LATEXed: January 19, 2020 04:21

Miller, Hassanieh (UIUC) CS374 1 Spring 2020 1 / 54

Part I

(Polynomial Time) Reductions

Miller, Hassanieh (UIUC) CS374 2 Spring 2020 2 / 54

Reductions

A reduction from Problem X to Problem Y means (informally) that
if we have an algorithm for Problem Y , we can use it to find an
algorithm for Problem X .

Using Reductions
1 We use reductions to find algorithms to solve problems.

Miller, Hassanieh (UIUC) CS374 3 Spring 2020 3 / 54

Reductions

A reduction from Problem X to Problem Y means (informally) that
if we have an algorithm for Problem Y , we can use it to find an
algorithm for Problem X .

Using Reductions
1 We use reductions to find algorithms to solve problems.

Miller, Hassanieh (UIUC) CS374 3 Spring 2020 3 / 54

Reductions

A reduction from Problem X to Problem Y means (informally) that
if we have an algorithm for Problem Y , we can use it to find an
algorithm for Problem X .

Using Reductions
1 We use reductions to find algorithms to solve problems.

2 We also use reductions to show that we can’t find algorithms for
some problems. (We say that these problems are hard.)

Miller, Hassanieh (UIUC) CS374 3 Spring 2020 3 / 54

Reductions for decision problems/languages

For languages LX , LY , a reduction from LX to LY is:

1 An algorithm . . .

2 Input: w ∈ Σ∗

3 Output: w ′ ∈ Σ∗

4 Such that:
w ∈ LY ⇐⇒ w ′ ∈ LX

(Actually, this is only one type of reduction, but this is the one we’ll
use most often.) There are other kinds of reductions.

Miller, Hassanieh (UIUC) CS374 4 Spring 2020 4 / 54

Reductions for decision problems/languages

For languages LX , LY , a reduction from LX to LY is:

1 An algorithm . . .

2 Input: w ∈ Σ∗

3 Output: w ′ ∈ Σ∗

4 Such that:
w ∈ LY ⇐⇒ w ′ ∈ LX

(Actually, this is only one type of reduction, but this is the one we’ll
use most often.) There are other kinds of reductions.

Miller, Hassanieh (UIUC) CS374 4 Spring 2020 4 / 54

Reductions for decision problems/languages

For decision problems X ,Y , a reduction from X to Y is:

1 An algorithm . . .

2 Input: IX , an instance of X .

3 Output: IY an instance of Y .

4 Such that:
IY is YES instance of Y ⇐⇒ IX is YES instance of X

Miller, Hassanieh (UIUC) CS374 5 Spring 2020 5 / 54

Using reductions to solve problems

1 R: Reduction X → Y
2 AY : algorithm for Y :

3 =⇒ New algorithm for X :
AX (IX):

// IX: instance of X.

IY ⇐R(IX)
return AY (IY)

If R and AY polynomial-time =⇒ AX polynomial-time.

Miller, Hassanieh (UIUC) CS374 6 Spring 2020 6 / 54

Using reductions to solve problems

1 R: Reduction X → Y
2 AY : algorithm for Y :

3 =⇒ New algorithm for X :
AX (IX):

// IX: instance of X.

IY ⇐R(IX)
return AY (IY)

If R and AY polynomial-time =⇒ AX polynomial-time.

Miller, Hassanieh (UIUC) CS374 6 Spring 2020 6 / 54

Using reductions to solve problems

1 R: Reduction X → Y
2 AY : algorithm for Y :

3 =⇒ New algorithm for X :
AX (IX):

// IX: instance of X.

IY ⇐R(IX)
return AY (IY)

AY

IY
YES

NO

IX
R

AX

If R and AY polynomial-time =⇒ AX polynomial-time.

Miller, Hassanieh (UIUC) CS374 6 Spring 2020 6 / 54

Comparing Problems

1 “Problem X is no harder to solve than Problem Y ”.

2 If Problem X reduces to Problem Y (we write X ≤ Y), then
X cannot be harder to solve than Y .

3 X ≤ Y :
1 X is no harder than Y , or
2 Y is at least as hard as X .

Miller, Hassanieh (UIUC) CS374 7 Spring 2020 7 / 54

Part II

Examples of Reductions

Miller, Hassanieh (UIUC) CS374 8 Spring 2020 8 / 54

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

Miller, Hassanieh (UIUC) CS374 9 Spring 2020 9 / 54

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

Miller, Hassanieh (UIUC) CS374 9 Spring 2020 9 / 54

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

2 clique: every pair of vertices in V ′ is connected by an edge of
G .

Miller, Hassanieh (UIUC) CS374 9 Spring 2020 9 / 54

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

2 clique: every pair of vertices in V ′ is connected by an edge of
G .

Miller, Hassanieh (UIUC) CS374 9 Spring 2020 9 / 54

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

2 clique: every pair of vertices in V ′ is connected by an edge of
G .

Miller, Hassanieh (UIUC) CS374 9 Spring 2020 9 / 54

Independent Sets and Cliques

Given a graph G , a set of vertices V ′ is:

1 independent set: no two vertices of V ′ connected by an edge.

2 clique: every pair of vertices in V ′ is connected by an edge of
G .

Miller, Hassanieh (UIUC) CS374 9 Spring 2020 9 / 54

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k .
Question: Does G has an independent set of size ≥ k?

Problem: Clique

Instance: A graph G and an integer k .
Question: Does G has a clique of size ≥ k?

Miller, Hassanieh (UIUC) CS374 10 Spring 2020 10 / 54

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k .
Question: Does G has an independent set of size ≥ k?

Problem: Clique

Instance: A graph G and an integer k .
Question: Does G has a clique of size ≥ k?

Miller, Hassanieh (UIUC) CS374 10 Spring 2020 10 / 54

Recall

For decision problems X ,Y , a reduction from X to Y is:

1 An algorithm . . .

2 that takes IX , an instance of X as input . . .

3 and returns IY , an instance of Y as output . . .

4 such that the solution (YES/NO) to IY is the same as the
solution to IX .

Miller, Hassanieh (UIUC) CS374 11 Spring 2020 11 / 54

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Miller, Hassanieh (UIUC) CS374 12 Spring 2020 12 / 54

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Miller, Hassanieh (UIUC) CS374 12 Spring 2020 12 / 54

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Reduction given < G , k > outputs < G , k > where G is the
complement of G . G has an edge (u, v) if and only if (u, v) is not
an edge of G .

Miller, Hassanieh (UIUC) CS374 12 Spring 2020 12 / 54

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Reduction given < G , k > outputs < G , k > where G is the
complement of G . G has an edge (u, v) if and only if (u, v) is not
an edge of G .

Miller, Hassanieh (UIUC) CS374 12 Spring 2020 12 / 54

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Reduction given < G , k > outputs < G , k > where G is the
complement of G . G has an edge (u, v) if and only if (u, v) is not
an edge of G .

Miller, Hassanieh (UIUC) CS374 12 Spring 2020 12 / 54

Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k .

Reduction given < G , k > outputs < G , k > where G is the
complement of G . G has an edge (u, v) if and only if (u, v) is not
an edge of G .

Miller, Hassanieh (UIUC) CS374 12 Spring 2020 12 / 54

Correctness of reduction

Lemma

G has an independent set of size k if and only if G has a clique of
size k .

Proof.
Need to prove two facts:
G has independent set of size at least k implies that G has a clique
of size at least k .
G has a clique of size at least k implies that G has an independent
set of size at least k .
Easy to see both from the fact that S ⊆ V is an independent set in
G if and only if S is a clique in G .

Miller, Hassanieh (UIUC) CS374 13 Spring 2020 13 / 54

Independent Set and Clique

1 Independent Set ≤ Clique.

What does this mean?

2 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

4 Also... Clique ≤ Independent Set. Why? Thus Clique and
Independent Set are polnomial-time equivalent.

Miller, Hassanieh (UIUC) CS374 14 Spring 2020 14 / 54

Independent Set and Clique

1 Independent Set ≤ Clique.
What does this mean?

2 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

4 Also... Clique ≤ Independent Set. Why? Thus Clique and
Independent Set are polnomial-time equivalent.

Miller, Hassanieh (UIUC) CS374 14 Spring 2020 14 / 54

Independent Set and Clique

1 Independent Set ≤ Clique.
What does this mean?

2 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

4 Also... Clique ≤ Independent Set. Why? Thus Clique and
Independent Set are polnomial-time equivalent.

Miller, Hassanieh (UIUC) CS374 14 Spring 2020 14 / 54

Independent Set and Clique

1 Independent Set ≤ Clique.
What does this mean?

2 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

4 Also... Clique ≤ Independent Set. Why? Thus Clique and
Independent Set are polnomial-time equivalent.

Miller, Hassanieh (UIUC) CS374 14 Spring 2020 14 / 54

DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem (DFA universality)

Input: A DFA M .
Goal: Is M universal?

How do we solve DFA Universality?
We check if M has any reachable non-final state.

Miller, Hassanieh (UIUC) CS374 15 Spring 2020 15 / 54

DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem (DFA universality)

Input: A DFA M .
Goal: Is M universal?

How do we solve DFA Universality?
We check if M has any reachable non-final state.

Miller, Hassanieh (UIUC) CS374 15 Spring 2020 15 / 54

DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem (DFA universality)

Input: A DFA M .
Goal: Is M universal?

How do we solve DFA Universality?

We check if M has any reachable non-final state.

Miller, Hassanieh (UIUC) CS374 15 Spring 2020 15 / 54

DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem (DFA universality)

Input: A DFA M .
Goal: Is M universal?

How do we solve DFA Universality?
We check if M has any reachable non-final state.

Miller, Hassanieh (UIUC) CS374 15 Spring 2020 15 / 54

NFA Universality

An NFA N is said to be universal if it accepts every string. That is,
L(N) = Σ∗, the set of all strings.

Problem (NFA universality)

Input: A NFA M .
Goal: Is M universal?

How do we solve NFA Universality?

Reduce it to DFA Universality?
Given an NFA N , convert it to an equivalent DFA M , and use the
DFA Universality Algorithm.
The reduction takes exponential time!
NFA Universality is known to be PSPACE-Complete and we do not
expect a polynomial-time algorithm.

Miller, Hassanieh (UIUC) CS374 16 Spring 2020 16 / 54

NFA Universality

An NFA N is said to be universal if it accepts every string. That is,
L(N) = Σ∗, the set of all strings.

Problem (NFA universality)

Input: A NFA M .
Goal: Is M universal?

How do we solve NFA Universality?
Reduce it to DFA Universality?

Given an NFA N , convert it to an equivalent DFA M , and use the
DFA Universality Algorithm.
The reduction takes exponential time!
NFA Universality is known to be PSPACE-Complete and we do not
expect a polynomial-time algorithm.

Miller, Hassanieh (UIUC) CS374 16 Spring 2020 16 / 54

NFA Universality

An NFA N is said to be universal if it accepts every string. That is,
L(N) = Σ∗, the set of all strings.

Problem (NFA universality)

Input: A NFA M .
Goal: Is M universal?

How do we solve NFA Universality?
Reduce it to DFA Universality?
Given an NFA N , convert it to an equivalent DFA M , and use the
DFA Universality Algorithm.

The reduction takes exponential time!
NFA Universality is known to be PSPACE-Complete and we do not
expect a polynomial-time algorithm.

Miller, Hassanieh (UIUC) CS374 16 Spring 2020 16 / 54

NFA Universality

An NFA N is said to be universal if it accepts every string. That is,
L(N) = Σ∗, the set of all strings.

Problem (NFA universality)

Input: A NFA M .
Goal: Is M universal?

How do we solve NFA Universality?
Reduce it to DFA Universality?
Given an NFA N , convert it to an equivalent DFA M , and use the
DFA Universality Algorithm.
The reduction takes exponential time!
NFA Universality is known to be PSPACE-Complete and we do not
expect a polynomial-time algorithm.

Miller, Hassanieh (UIUC) CS374 16 Spring 2020 16 / 54

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in
polynomial-time reductions. Reductions that take longer are not
useful.

If we have a polynomial-time reduction from problem X to problem
Y (we write X ≤P Y), and a poly-time algorithm AY for Y , we
have a polynomial-time/efficient algorithm for X .

Ax

R AYIX IY YES

NO

Miller, Hassanieh (UIUC) CS374 17 Spring 2020 17 / 54

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in
polynomial-time reductions. Reductions that take longer are not
useful.

If we have a polynomial-time reduction from problem X to problem
Y (we write X ≤P Y), and a poly-time algorithm AY for Y , we
have a polynomial-time/efficient algorithm for X .

Ax

R AYIX IY YES

NO

Miller, Hassanieh (UIUC) CS374 17 Spring 2020 17 / 54

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in
polynomial-time reductions. Reductions that take longer are not
useful.

If we have a polynomial-time reduction from problem X to problem
Y (we write X ≤P Y), and a poly-time algorithm AY for Y , we
have a polynomial-time/efficient algorithm for X .

Ax

R AYIX IY YES

NO

Miller, Hassanieh (UIUC) CS374 17 Spring 2020 17 / 54

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in
polynomial-time reductions. Reductions that take longer are not
useful.

If we have a polynomial-time reduction from problem X to problem
Y (we write X ≤P Y), and a poly-time algorithm AY for Y , we
have a polynomial-time/efficient algorithm for X .

Ax

R AYIX IY YES

NO

Miller, Hassanieh (UIUC) CS374 17 Spring 2020 17 / 54

Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision
problem Y is an algorithm A that has the following properties:

1 given an instance IX of X , A produces an instance IY of Y
2 A runs in time polynomial in |IX |.
3 Answer to IX YES iff answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X .

Such a reduction is called a Karp reduction. Most reductions we
will need are Karp reductions.Karp reductions are the same as
mapping reductions when specialized to polynomial time for the
reduction step.

Miller, Hassanieh (UIUC) CS374 18 Spring 2020 18 / 54

Reductions again...

Let X and Y be two decision problems, such that X can be solved in
polynomial time, and X ≤P Y . Then

(A) Y can be solved in polynomial time.

(B) Y can NOT be solved in polynomial time.

(C) If Y is hard then X is also hard.

(D) None of the above.

(E) All of the above.

Miller, Hassanieh (UIUC) CS374 19 Spring 2020 19 / 54

Polynomial-time reductions and hardness

For decision problems X and Y , if X ≤P Y , and Y has an efficient
algorithm, X has an efficient algorithm.

If you believe that Independent Set does not have an efficient
algorithm, why should you believe the same of Clique?

Because we showed Independent Set ≤P Clique. If Clique had an
efficient algorithm, so would Independent Set!

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm!

Miller, Hassanieh (UIUC) CS374 20 Spring 2020 20 / 54

Polynomial-time reductions and hardness

For decision problems X and Y , if X ≤P Y , and Y has an efficient
algorithm, X has an efficient algorithm.

If you believe that Independent Set does not have an efficient
algorithm, why should you believe the same of Clique?

Because we showed Independent Set ≤P Clique. If Clique had an
efficient algorithm, so would Independent Set!

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm!

Miller, Hassanieh (UIUC) CS374 20 Spring 2020 20 / 54

Polynomial-time reductions and hardness

For decision problems X and Y , if X ≤P Y , and Y has an efficient
algorithm, X has an efficient algorithm.

If you believe that Independent Set does not have an efficient
algorithm, why should you believe the same of Clique?

Because we showed Independent Set ≤P Clique. If Clique had an
efficient algorithm, so would Independent Set!

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm!

Miller, Hassanieh (UIUC) CS374 20 Spring 2020 20 / 54

Polynomial-time reductions and hardness

For decision problems X and Y , if X ≤P Y , and Y has an efficient
algorithm, X has an efficient algorithm.

If you believe that Independent Set does not have an efficient
algorithm, why should you believe the same of Clique?

Because we showed Independent Set ≤P Clique. If Clique had an
efficient algorithm, so would Independent Set!

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm!

Miller, Hassanieh (UIUC) CS374 20 Spring 2020 20 / 54

Polynomial-time reductions and instance sizes

Proposition
Let R be a polynomial-time reduction from X to Y . Then for any
instance IX of X , the size of the instance IY of Y produced from IX
by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX |
it runs in time p(|IX |) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.

Miller, Hassanieh (UIUC) CS374 21 Spring 2020 21 / 54

Polynomial-time reductions and instance sizes

Proposition
Let R be a polynomial-time reduction from X to Y . Then for any
instance IX of X , the size of the instance IY of Y produced from IX
by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX |
it runs in time p(|IX |) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.

Miller, Hassanieh (UIUC) CS374 21 Spring 2020 21 / 54

Polynomial-time reductions and instance sizes

Proposition
Let R be a polynomial-time reduction from X to Y . Then for any
instance IX of X , the size of the instance IY of Y produced from IX
by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX |
it runs in time p(|IX |) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.

Miller, Hassanieh (UIUC) CS374 21 Spring 2020 21 / 54

Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision
problem Y is an algorithm A that has the following properties:

1 Given an instance IX of X , A produces an instance IY of Y .

2 A runs in time polynomial in |IX |. This implies that |IY | (size of
IY) is polynomial in |IX |.

3 Answer to IX YES iff answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X .

Miller, Hassanieh (UIUC) CS374 22 Spring 2020 22 / 54

Transitivity of Reductions

Proposition
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Note: X ≤P Y does not imply that Y ≤P X and hence it is very
important to know the FROM and TO in a reduction.

To prove X ≤P Y you need to show a reduction FROM X TO Y
That is, show that an algorithm for Y implies an algorithm for X .

Miller, Hassanieh (UIUC) CS374 23 Spring 2020 23 / 54

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .

Miller, Hassanieh (UIUC) CS374 24 Spring 2020 24 / 54

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .

Miller, Hassanieh (UIUC) CS374 24 Spring 2020 24 / 54

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .

Miller, Hassanieh (UIUC) CS374 24 Spring 2020 24 / 54

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .

Miller, Hassanieh (UIUC) CS374 24 Spring 2020 24 / 54

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .

Miller, Hassanieh (UIUC) CS374 24 Spring 2020 24 / 54

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k .
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?

Miller, Hassanieh (UIUC) CS374 25 Spring 2020 25 / 54

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k .
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?

Miller, Hassanieh (UIUC) CS374 25 Spring 2020 25 / 54

Relationship between...
Vertex Cover and Independent Set

Proposition

Let G = (V ,E) be a graph. S is an independent set if and only if
V \ S is a vertex cover.

Proof.
(⇒) Let S be an independent set

1 Consider any edge uv ∈ E .
2 Since S is an independent set, either u 6∈ S or v 6∈ S .
3 Thus, either u ∈ V \ S or v ∈ V \ S .
4 V \ S is a vertex cover.

(⇐) Let V \ S be some vertex cover:
1 Consider u, v ∈ S
2 uv is not an edge of G, as otherwise V \ S does not cover uv .
3 =⇒ S is thus an independent set.

Miller, Hassanieh (UIUC) CS374 26 Spring 2020 26 / 54

Independent Set ≤P Vertex Cover

1 G : graph with n vertices, and an integer k be an instance of the
Independent Set problem.

2 G has an independent set of size ≥ k iff G has a vertex cover
of size ≤ n − k

3 (G , k) is an instance of Independent Set , and (G , n − k) is
an instance of Vertex Cover with the same answer.

4 Therefore, Independent Set ≤P Vertex Cover. Also Vertex
Cover ≤P Independent Set.

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 54

Independent Set ≤P Vertex Cover

1 G : graph with n vertices, and an integer k be an instance of the
Independent Set problem.

2 G has an independent set of size ≥ k iff G has a vertex cover
of size ≤ n − k

3 (G , k) is an instance of Independent Set , and (G , n − k) is
an instance of Vertex Cover with the same answer.

4 Therefore, Independent Set ≤P Vertex Cover. Also Vertex
Cover ≤P Independent Set.

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 54

Independent Set ≤P Vertex Cover

1 G : graph with n vertices, and an integer k be an instance of the
Independent Set problem.

2 G has an independent set of size ≥ k iff G has a vertex cover
of size ≤ n − k

3 (G , k) is an instance of Independent Set , and (G , n − k) is
an instance of Vertex Cover with the same answer.

4 Therefore, Independent Set ≤P Vertex Cover. Also Vertex
Cover ≤P Independent Set.

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 54

Independent Set ≤P Vertex Cover

1 G : graph with n vertices, and an integer k be an instance of the
Independent Set problem.

2 G has an independent set of size ≥ k iff G has a vertex cover
of size ≤ n − k

3 (G , k) is an instance of Independent Set , and (G , n − k) is
an instance of Vertex Cover with the same answer.

4 Therefore, Independent Set ≤P Vertex Cover. Also Vertex
Cover ≤P Independent Set.

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 54

Proving Correctness of Reductions

To prove that X ≤P Y you need to give an algorithm A that:

1 Transforms an instance IX of X into an instance IY of Y .
2 Satisfies the property that answer to IX is YES iff IY is YES.

1 typical easy direction to prove: answer to IY is YES if answer to
IX is YES

2 typical difficult direction to prove: answer to IX is YES if
answer to IY is YES (equivalently answer to IX is NO if answer
to IY is NO).

3 Runs in polynomial time.

Miller, Hassanieh (UIUC) CS374 28 Spring 2020 28 / 54

Part III

The Satisfiability Problem (SAT)

Miller, Hassanieh (UIUC) CS374 29 Spring 2020 29 / 54

Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

1 A literal is either a boolean variable xi or its negation ¬xi .

2 A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

3 A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

Miller, Hassanieh (UIUC) CS374 30 Spring 2020 30 / 54

Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

1 A literal is either a boolean variable xi or its negation ¬xi .

2 A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

3 A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

Miller, Hassanieh (UIUC) CS374 30 Spring 2020 30 / 54

Satisfiability

Problem: SAT

Instance: A CNF formula ϕ.
Question: Is there a truth assignment to the variable of
ϕ such that ϕ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula ϕ.
Question: Is there a truth assignment to the variable of
ϕ such that ϕ evaluates to true?

Miller, Hassanieh (UIUC) CS374 31 Spring 2020 31 / 54

Satisfiability

SAT
Given a CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

Example
1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is satisfiable; take

x1, x2, . . . x5 to be all true

2 (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2) is not
satisfiable.

3SAT
Given a 3CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

(More on 2SAT in a bit...)
Miller, Hassanieh (UIUC) CS374 32 Spring 2020 32 / 54

Importance of SAT and 3SAT

1 SAT and 3SAT are basic constraint satisfaction problems.

2 Many different problems can reduced to them because of the
simple yet powerful expressively of logical constraints.

3 Arise naturally in many applications involving hardware and
software verification and correctness.

4 As we will see, it is a fundamental problem in theory of
NP-Completeness.

Miller, Hassanieh (UIUC) CS374 33 Spring 2020 33 / 54

z = x

Given two bits x, z which of the following SAT formulas is
equivalent to the formula z = x :

(A) (z ∨ x) ∧ (z ∨ x).

(B) (z ∨ x) ∧ (z ∨ x).

(C) (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x).

(D) z ⊕ x .

(E) (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x).

Miller, Hassanieh (UIUC) CS374 34 Spring 2020 34 / 54

z = x ∧ y

Given three bits x, y , z which of the following SAT formulas is
equivalent to the formula z = x ∧ y :

(A) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).

(B) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).

(C) (z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y).

(D) (z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y).

(E) (z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧
(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y).

Miller, Hassanieh (UIUC) CS374 35 Spring 2020 35 / 54

Converting z = x ∧ y to 3SAT

z x y
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Miller, Hassanieh (UIUC) CS374 36 Spring 2020 36 / 54

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Miller, Hassanieh (UIUC) CS374 36 Spring 2020 36 / 54

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1

0 1 1 0 0 1 1 1

1 0 0 0 1 0 1 1

1 0 1 0 1 1 0 1

1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

Miller, Hassanieh (UIUC) CS374 36 Spring 2020 36 / 54

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1

0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

Miller, Hassanieh (UIUC) CS374 36 Spring 2020 36 / 54

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1

1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

Miller, Hassanieh (UIUC) CS374 36 Spring 2020 36 / 54

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1

1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

Miller, Hassanieh (UIUC) CS374 36 Spring 2020 36 / 54

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1

1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

Miller, Hassanieh (UIUC) CS374 36 Spring 2020 36 / 54

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

Miller, Hassanieh (UIUC) CS374 36 Spring 2020 36 / 54

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1(

z = x ∧ y
)

≡
(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)

Miller, Hassanieh (UIUC) CS374 36 Spring 2020 36 / 54

Converting z = x ∧ y to 3SAT

z x y
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Miller, Hassanieh (UIUC) CS374 37 Spring 2020 37 / 54

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Miller, Hassanieh (UIUC) CS374 37 Spring 2020 37 / 54

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y clauses

0 0 0 1
0 0 1 1
0 1 0 1

0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Miller, Hassanieh (UIUC) CS374 37 Spring 2020 37 / 54

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y clauses

0 0 0 1
0 0 1 1
0 1 0 1

0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 0 z ∨ x ∨ y
1 1 0 0 z ∨ x ∨ y
1 1 1 1

Miller, Hassanieh (UIUC) CS374 37 Spring 2020 37 / 54

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y clauses

0 0 0 1
0 0 1 1
0 1 0 1

0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 0 z ∨ x ∨ y
1 1 0 0 z ∨ x ∨ y
1 1 1 1(

z = x ∧ y
)

≡
(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)

Miller, Hassanieh (UIUC) CS374 37 Spring 2020 37 / 54

Converting z = x ∧ y to 3SAT
Simplify further if you want to

1 Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1

(
z ∨ x ∨ u

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ x

)
2

(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ y

)
2 Using the above two observation, we have that our formula

ψ ≡
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)
Lemma(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)

Miller, Hassanieh (UIUC) CS374 38 Spring 2020 38 / 54

Converting z = x ∧ y to 3SAT
Simplify further if you want to

1 Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1

(
z ∨ x ∨ u

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ x

)
2

(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ y

)

2 Using the above two observation, we have that our formula

ψ ≡
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)
Lemma(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)

Miller, Hassanieh (UIUC) CS374 38 Spring 2020 38 / 54

Converting z = x ∧ y to 3SAT
Simplify further if you want to

1 Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1

(
z ∨ x ∨ u

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ x

)
2

(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ y

)
2 Using the above two observation, we have that our formula

ψ ≡
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)

is equivalent to ψ ≡
(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)
Lemma(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)

Miller, Hassanieh (UIUC) CS374 38 Spring 2020 38 / 54

Converting z = x ∧ y to 3SAT
Simplify further if you want to

1 Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1

(
z ∨ x ∨ u

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ x

)
2

(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ y

)
2 Using the above two observation, we have that our formula

ψ ≡
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)

Lemma(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)

Miller, Hassanieh (UIUC) CS374 38 Spring 2020 38 / 54

Converting z = x ∧ y to 3SAT
Simplify further if you want to

1 Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1

(
z ∨ x ∨ u

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ x

)
2

(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ y

)
2 Using the above two observation, we have that our formula

ψ ≡
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)
Lemma(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧
(
z ∨ x

)
∧
(
z ∨ y

)

Miller, Hassanieh (UIUC) CS374 38 Spring 2020 38 / 54

z = x ∨ y

Given three bits x, y , z which of the following SAT formulas is
equivalent to the formula z = x ∨ y :

(A) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).

(B) (z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y).

(C) (z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y).

(D) (z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧
(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y).

(E) (z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y).

Miller, Hassanieh (UIUC) CS374 39 Spring 2020 39 / 54

Converting z = x ∨ y to 3SAT

z x y
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 54

Converting z = x ∨ y to 3SAT

z x y z = x ∨ y
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 54

Converting z = x ∨ y to 3SAT

z x y z = x ∨ y clauses

0 0 0 1

0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 54

Converting z = x ∨ y to 3SAT

z x y z = x ∨ y clauses

0 0 0 1

0 0 1 0 z ∨ x ∨ y
0 1 0 0 z ∨ x ∨ y
0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 1
1 1 0 1
1 1 1 1

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 54

Converting z = x ∨ y to 3SAT

z x y z = x ∨ y clauses

0 0 0 1

0 0 1 0 z ∨ x ∨ y
0 1 0 0 z ∨ x ∨ y
0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 1
1 1 0 1
1 1 1 1(

z = x ∨ y
)

≡
(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 54

Converting z = x ∨ y to 3SAT
Simplify further if you want to(
z = x ∨ y

)
≡(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)

1 Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1 (z ∨ x ∨ y) ∧(z ∨ x ∨ y) = z ∨ y .
2 (z ∨ x ∨ y) ∧(z ∨ x ∨ y) = z ∨ x

2 Using the above two observation, we have the following.

Lemma
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧(z ∨ x) ∧(z ∨ x ∨ y)

Miller, Hassanieh (UIUC) CS374 41 Spring 2020 41 / 54

Converting z = x ∨ y to 3SAT
Simplify further if you want to(
z = x ∨ y

)
≡(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)

1 Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1 (z ∨ x ∨ y) ∧(z ∨ x ∨ y) = z ∨ y .
2 (z ∨ x ∨ y) ∧(z ∨ x ∨ y) = z ∨ x

2 Using the above two observation, we have the following.

Lemma
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧(z ∨ x) ∧(z ∨ x ∨ y)

Miller, Hassanieh (UIUC) CS374 41 Spring 2020 41 / 54

Converting z = x ∨ y to 3SAT
Simplify further if you want to(
z = x ∨ y

)
≡(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)

1 Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1 (z ∨ x ∨ y) ∧(z ∨ x ∨ y) = z ∨ y .
2 (z ∨ x ∨ y) ∧(z ∨ x ∨ y) = z ∨ x

2 Using the above two observation, we have the following.

Lemma
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧(z ∨ x) ∧(z ∨ x ∨ y)

Miller, Hassanieh (UIUC) CS374 41 Spring 2020 41 / 54

Converting z = x ∨ y to 3SAT
Simplify further if you want to(
z = x ∨ y

)
≡(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)

1 Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1 (z ∨ x ∨ y) ∧(z ∨ x ∨ y) = z ∨ y .
2 (z ∨ x ∨ y) ∧(z ∨ x ∨ y) = z ∨ x

2 Using the above two observation, we have the following.

Lemma
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧(z ∨ x) ∧(z ∨ x ∨ y)

Miller, Hassanieh (UIUC) CS374 41 Spring 2020 41 / 54

SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(

x ∨ y ∨ z ∨ w ∨ u
)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...

Basic idea
1 Pad short clauses so they have 3 literals.

2 Break long clauses into shorter clauses.

3 Repeat the above till we have a 3CNF.

Miller, Hassanieh (UIUC) CS374 42 Spring 2020 42 / 54

SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(

x ∨ y ∨ z ∨ w ∨ u
)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...

Basic idea
1 Pad short clauses so they have 3 literals.

2 Break long clauses into shorter clauses.

3 Repeat the above till we have a 3CNF.

Miller, Hassanieh (UIUC) CS374 42 Spring 2020 42 / 54

3SAT ≤P SAT

1 3SAT ≤P SAT.

2 Because...
A 3SAT instance is also an instance of SAT.

Miller, Hassanieh (UIUC) CS374 43 Spring 2020 43 / 54

SAT ≤P 3SAT

Claim
SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that

1 ϕ is satisfiable iff ϕ′ is satisfiable.

2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several
clauses of length exactly 3.

Miller, Hassanieh (UIUC) CS374 44 Spring 2020 44 / 54

SAT ≤P 3SAT

Claim
SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that

1 ϕ is satisfiable iff ϕ′ is satisfiable.

2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several
clauses of length exactly 3.

Miller, Hassanieh (UIUC) CS374 44 Spring 2020 44 / 54

SAT ≤P 3SAT

Claim
SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that

1 ϕ is satisfiable iff ϕ′ is satisfiable.

2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several
clauses of length exactly 3.

Miller, Hassanieh (UIUC) CS374 44 Spring 2020 44 / 54

SAT ≤P 3SAT
A clause with two literals

Reduction Ideas: clause with 2 literals
1 Case clause with 2 literals: Let c = `1 ∨ `2. Let u be a new

variable. Consider

c ′ =
(
`1 ∨ `2 ∨ u

)
∧

(
`1 ∨ `2 ∨ ¬u

)
.

2 Suppose ϕ = ψ ∧ c . Then ϕ′ = ψ ∧ c ′ is satisfiable iff ϕ is
satisfiable.

Miller, Hassanieh (UIUC) CS374 45 Spring 2020 45 / 54

SAT ≤P 3SAT
A clause with a single literal

Reduction Ideas: clause with 1 literal
1 Case clause with one literal: Let c be a clause with a single

literal (i.e., c = `). Let u, v be new variables. Consider

c ′ =
(
` ∨ u ∨ v

)
∧
(
` ∨ u ∨ ¬v

)
∧
(
` ∨ ¬u ∨ v

)
∧
(
` ∨ ¬u ∨ ¬v

)
.

2 Suppose ϕ = ψ ∧ c . Then ϕ′ = ψ ∧ c ′ is satisfiable iff ϕ is
satisfiable.

Miller, Hassanieh (UIUC) CS374 46 Spring 2020 46 / 54

SAT ≤P 3SAT
A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals
1 Case clause with five literals: Let c = `1 ∨ `2 ∨ `3 ∨ `4 ∨ `5.

Let u be a new variable. Consider

c ′ =
(
`1 ∨ `2 ∨ `3 ∨ u

)
∧

(
`4 ∨ `5 ∨ ¬u

)
.

2 Suppose ϕ = ψ ∧ c . Then ϕ′ = ψ ∧ c ′ is satisfiable iff ϕ is
satisfiable.

Miller, Hassanieh (UIUC) CS374 47 Spring 2020 47 / 54

SAT ≤P 3SAT
A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals
1 Case clause with k > 3 literals: Let c = `1 ∨ `2 ∨ . . . ∨ `k .

Let u be a new variable. Consider

c ′ =
(
`1 ∨ `2 . . . `k−2 ∨ u

)
∧

(
`k−1 ∨ `k ∨ ¬u

)
.

2 Suppose ϕ = ψ ∧ c . Then ϕ′ = ψ ∧ c ′ is satisfiable iff ϕ is
satisfiable.

Miller, Hassanieh (UIUC) CS374 48 Spring 2020 48 / 54

Breaking a clause

Lemma
For any boolean formulas X and Y and z a new boolean variable.
Then

X ∨ Y is satisfiable

if and only if, z can be assigned a value such that(
X ∨ z

)
∧

(
Y ∨ ¬z

)
is satisfiable

(with the same assignment to the variables appearing in X and Y).

Miller, Hassanieh (UIUC) CS374 49 Spring 2020 49 / 54

SAT ≤P 3SAT (contd)
Clauses with more than 3 literals

Let c = `1 ∨ · · · ∨ `k . Let u1, . . . uk−3 be new variables. Consider

c ′ =
(
`1 ∨ `2 ∨ u1

)
∧

(
`3 ∨ ¬u1 ∨ u2

)
∧

(
`4 ∨ ¬u2 ∨ u3

)
∧

· · · ∧
(
`k−2 ∨ ¬uk−4 ∨ uk−3

)
∧

(
`k−1 ∨ `k ∨ ¬uk−3

)
.

Claim
ϕ = ψ ∧ c is satisfiable iff ϕ′ = ψ ∧ c ′ is satisfiable.

Another way to see it — reduce size of clause by one:

c ′ =
(
`1 ∨ `2 . . . ∨ `k−2 ∨ uk−3

)
∧

(
`k−1 ∨ `k ∨ ¬uk−3

)
.

Miller, Hassanieh (UIUC) CS374 50 Spring 2020 50 / 54

An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)

∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)

∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

Miller, Hassanieh (UIUC) CS374 51 Spring 2020 51 / 54

An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)

∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)

∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

Miller, Hassanieh (UIUC) CS374 51 Spring 2020 51 / 54

An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)

∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)

∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

Miller, Hassanieh (UIUC) CS374 51 Spring 2020 51 / 54

An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)

∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)

∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .

Miller, Hassanieh (UIUC) CS374 51 Spring 2020 51 / 54

Overall Reduction Algorithm
Reduction from SAT to 3SAT

ReduceSATTo3SAT(ϕ):
// ϕ: CNF formula.

for each clause c of ϕ do
if c does not have exactly 3 literals then

construct c ′ as before

else
c ′ = c

ψ is conjunction of all c ′ constructed in loop

return Solver3SAT(ψ)

Correctness (informal)

ϕ is satisfiable iff ψ is satisfiable because for each clause c , the new
3CNF formula c ′ is logically equivalent to c .

Miller, Hassanieh (UIUC) CS374 52 Spring 2020 52 / 54

What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from SAT (or 3SAT) to
2SAT. If there was, then SAT and 3SAT would be solvable in
polynomial time.

Why the reduction from 3SAT to 2SAT fails?

Consider a clause (x ∨ y ∨ z). We need to reduce it to a collection
of 2CNF clauses. Introduce a face variable α, and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) (bad! clause with 3 vars)

or (x ∨ α) ∧ (¬α ∨ y ∨ z) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)
Miller, Hassanieh (UIUC) CS374 53 Spring 2020 53 / 54

What about 2SAT?

A challenging exercise: Given a 2SAT formula show to compute its
satisfying assignment...
(Hint: Create a graph with two vertices for each variable (for a
variable x there would be two vertices with labels x = 0 and
x = 1). For ever 2CNF clause add two directed edges in the graph.
The edges are implication edges: They state that if you decide to
assign a certain value to a variable, then you must assign a certain
value to some other variable.
Now compute the strong connected components in this graph, and
continue from there...)

Miller, Hassanieh (UIUC) CS374 54 Spring 2020 54 / 54

	(Polynomial Time) Reductions
	Overview

	Examples of Reductions
	Independent Set and Clique
	NFAs/DFAs and Universality
	Independent Set and Vertex Cover

	The Satisfiability Problem (SAT)
	SAT and 3SAT

