Algorithms & Models of Computation CS/ECE 374 B, Spring 2020

NP and **NP** Completeness

Lecture 23 Wednesday, April 29, 2020

LATEXed: January 19, 2020 04:28

Part I

NP-Completeness

NP: Non-deterministic polynomial

Definition

A decision problem is in **NP**, if it has a polynomial time certifier, for all the all the YES instances.

Definition

A decision problem is in **co-NP**, if it has a polynomial time certifier, for all the all the NO instances.

Example

But Not3SAT is in co-NP.

"Hardest" Problems

Question

What is the hardest problem in NP? How do we define it?

Towards a definition

- Hardest problem must be in NP.
- e Hardest problem must be at least as "difficult" as every other problem in NP.

NP-Complete Problems

Definition

A problem **X** is said to be **NP-Complete** if

- $X \in NP$, and
- **(Hardness)** For any $Y \in NP$, $Y \leq_P X$.

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Proof.

 \Rightarrow Suppose X can be solved in polynomial time

- Let $Y \in NP$. We know $Y \leq_P X$.
- We showed that if Y ≤_P X and X can be solved in polynomial time, then Y can be solved in polynomial time.
- **3** Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subseteq P$.
- Since $\mathbf{P} \subseteq \mathbf{NP}$, we have $\mathbf{P} = \mathbf{NP}$.

 \Leftarrow Since **P** = **NP**, and **X** \in **NP**, we have a polynomial time algorithm for **X**.

NP-Hard Problems

Definition

A problem **X** is said to be **NP-Hard** if

(Hardness) For any $Y \in \mathbf{NP}$, we have that $Y \leq_P X$.

An NP-Hard problem need not be in NP!

Example: Halting problem is **NP-Hard** (why?) but not **NP-Complete**.

If X is NP-Complete

- Since we believe $P \neq NP$,
- **2** and solving X implies $\mathbf{P} = \mathbf{NP}$.

X is unlikely to be efficiently solvable.

If X is NP-Complete

- Since we believe $P \neq NP$,
- **2** and solving X implies $\mathbf{P} = \mathbf{NP}$.
- X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

If X is NP-Complete

- Since we believe $P \neq NP$,
- **2** and solving X implies $\mathbf{P} = \mathbf{NP}$.
- X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

If X is NP-Complete

- Since we believe $P \neq NP$,
- **2** and solving X implies $\mathbf{P} = \mathbf{NP}$.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)

NP-Complete Problems

Question

Are there any problems that are **NP-Complete**?

Answer

Yes! Many, many problems are **NP-Complete**.

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

Need to show

- **SAT** is in **NP**.
- **every NP** problem **X** reduces to **SAT**.

Will see proof in next lecture.

Steve Cook won the Turing award for his theorem.

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show that X is in NP.
- Give a polynomial-time reduction *from* a known NP-Complete problem such as SAT to X

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show that X is in NP.
- Give a polynomial-time reduction *from* a known NP-Complete problem such as SAT to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why?

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show that X is in NP.
- Give a polynomial-time reduction *from* a known NP-Complete problem such as SAT to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

3-SAT is NP-Complete

- 3-SAT is in NP
- SAT \leq_P 3-SAT as we saw

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- **2** SAT \leq_P 3-SAT
- **3-SAT** \leq_P Independent Set
- Independent Set Server
 Portex Cover
- Solution Independent Set \leq_P Clique
- **3-SAT** \leq_P 3-Color
- 3-SAT \leq_P Hamiltonian Cycle

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- **2** SAT \leq_P 3-SAT
- **3-SAT** \leq_P Independent Set
- Independent Set ≤_P Vertex Cover
- **Independent Set** \leq_P Clique
- **3-SAT** \leq_P 3-Color
- **3**-SAT \leq_P Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!

Part II

Reducing **3-SAT** to **Independent Set**

Problem: Independent Set

Instance: A graph G, integer k. **Question:** Is there an independent set in G of size k?

$3SAT \leq_P Independent Set$

The reduction **3SAT** \leq_P **Independent Set**

Input: Given a **3CNF** formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable.

The reduction **3SAT** \leq_P **Independent Set**

Input: Given a 3CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

The reduction **3SAT** \leq_P **Independent Set**

Input: Given a 3CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean formulas.

Interpreting **3SAT**

There are two ways to think about **3SAT**

Interpreting **3SAT**

There are two ways to think about **3SAT**

• Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.

Interpreting **3SAT**

There are two ways to think about **3SAT**

- Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true

Interpreting **3SAT**

There are two ways to think about **3SAT**

- Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and ¬x_i

We will take the second view of **3SAT** to construct the reduction.

() G_{φ} will have one vertex for each literal in a clause

19 / 57

Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$ Miller, Hassanieh (UIUC)CS37419Spring 2020

G_φ will have one vertex for each literal in a clause
Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

19 / 57

Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$ Miller, Hassanieh (UUC) CS374 19 Spring 2020

G_φ will have one vertex for each literal in a clause
Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

Spring 2020

19 / 57

Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$ Miller, Hassanieh (UUC) CS374 19

- G_{φ} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict

Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$ Miller, Hassanieh (UIUC) CS374 19

- G_{φ} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- Take k to be the number of clauses

Figure: Graph for

 $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

Correctness

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

 \Rightarrow Let **a** be the truth assignment satisfying φ

Correctness

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \Rightarrow Let *a* be the truth assignment satisfying φ
 - Pick one of the vertices, corresponding to true literals under *a*, from each triangle. This is an independent set of the appropriate size. Why?

Correctness (contd)

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- $\leftarrow \text{ Let } \mathbf{S} \text{ be an independent set of size } \mathbf{k}$
 - **S** must contain *exactly* one vertex from each clause
 - **§** S cannot contain vertices labeled by conflicting literals
 - Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause

Part III

NPCompleteness of Hamiltonian Cycle

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with *n* vertices Goal Does *G* have a Hamiltonian cycle?

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with *n* vertices Goal Does *G* have a Hamiltonian cycle?

• A Hamiltonian cycle is a cycle in the graph that visits every vertex in *G* exactly once

Is the following graph Hamiltonianan?

(A) Yes.(B) No.

Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP: exercise
- Hardness: We will show
 3-SAT ≤_P Directed Hamiltonian Cycle

Reduction

Given 3-SAT formula φ create a graph G_{φ} such that

- G_{arphi} has a Hamiltonian cycle if and only if arphi is satisfiable
- G_{φ} should be constructible from φ by a polynomial time algorithm \mathcal{A}

Notation: φ has *n* variables x_1, x_2, \ldots, x_n and *m* clauses C_1, C_2, \ldots, C_m .

Reduction: First Ideas

- Viewing SAT: Assign values to *n* variables, and each clauses has 3 ways in which it can be satisfied.
- Construct graph with 2ⁿ Hamiltonian cycles, where each cycle corresponds to some boolean assignment.
- Then add more graph structure to encode constraints on assignments imposed by the clauses.

- Traverse path *i* from left to right iff *x_i* is set to true
- Each path has 3(m + 1) nodes where m is number of clauses in φ; nodes numbered from left to right (1 to 3m + 3)

Correctness Proof

Proposition

arphi has a satisfying assignment iff G_{arphi} has a Hamiltonian cycle.

Proof.

- \Rightarrow Let a be the satisfying assignment for $\varphi.$ Define Hamiltonian cycle as follows
 - If $a(x_i) = 1$ then traverse path *i* from left to right
 - If $a(x_i) = 0$ then traverse path *i* from right to left
 - For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause

Hamiltonian Cycle \Rightarrow Satisfying assignment

Suppose Π is a Hamiltonian cycle in G_{φ}

- If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j + 1 on the same path i
 - If not, then only unvisited neighbor of 3j + 1 on path *i* is 3j + 2
 - Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- Similarly, if Π enters c_j from vertex 3j + 1 on path i then it must leave the clause vertex c_j on edge to 3j on path i

Example

Hamiltonian Cycle \implies Satisfying assignment (contd)

- Thus, vertices visited immediately before and after C_i are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in $G c_j$
- Consider Hamiltonian cycle in $G \{c_1, \ldots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

Hamiltonian Cycle

Problem

Input Given undirected graph G = (V, E)

Goal Does *G* have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness

Theorem

Hamiltonian cycle problem for undirected graphs is NP-Complete.

Proof.

- The problem is in NP; proof left as exercise.
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

• Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: vin, v, and vout
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})

Reduction: Wrapup

- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)

Part IV

NP-Completeness of Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k. **Question:** Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph. **Question:** Can the vertices of the graph be colored using **3** colors so that vertices connected by an edge do not get the same color?

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph. **Question:** Can the vertices of the graph be colored using **3** colors so that vertices connected by an edge do not get the same color?

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G.

- Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G.
- G can be partitioned into k independent sets iff G is k-colorable.

- Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G.
- G can be partitioned into k independent sets iff G is k-colorable.
- **③** Graph **2**-Coloring can be decided in polynomial time.

- Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G.
- G can be partitioned into k independent sets iff G is k-colorable.
- Scaph 2-Coloring can be decided in polynomial time.
- G is 2-colorable iff G is bipartite!

- Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G.
- G can be partitioned into k independent sets iff G is k-colorable.
- Sraph 2-Coloring can be decided in polynomial time.
- *G* is **2**-colorable iff *G* is bipartite!
- There is a linear time algorithm to check if G is bipartite using BFS (we saw this earlier).

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) k registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with k colors
- Moreover, 3-COLOR ≤_P k-Register Allocation, for any k ≥ 3

• Given n classes and their meeting times, are k rooms sufficient?

- Given n classes and their meeting times, are k rooms sufficient?
- Reduce to Graph k-Coloring problem

- Given *n* classes and their meeting times, are *k* rooms sufficient?
- Reduce to Graph k-Coloring problem
- Oreate graph G
 - a node *v_i* for each class *i*
 - an edge between v_i and v_j if classes i and j conflict

- Given *n* classes and their meeting times, are *k* rooms sufficient?
- Reduce to Graph k-Coloring problem
- Oreate graph G
 - a node v; for each class i
 - an edge between v_i and v_j if classes i and j conflict
- Service: **G** is **k**-colorable iff **k** rooms are sufficient.

Frequency Assignments in Cellular Networks

- Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)
 - Breakup a frequency range [a, b] into disjoint bands of frequencies [a₀, b₀], [a₁, b₁], ..., [a_k, b_k]
 - Each cell phone tower (simplifying) gets one band
 - Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Frequency Assignments in Cellular Networks

- Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)
 - Breakup a frequency range [a, b] into disjoint bands of frequencies [a₀, b₀], [a₁, b₁], ..., [a_k, b_k]
 - Each cell phone tower (simplifying) gets one band
 - Constraint: nearby towers cannot be assigned same band, otherwise signals will interference
- Problem: given k bands and some region with n towers, is there a way to assign the bands to avoid interference?

Frequency Assignments in Cellular Networks

- Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)
 - Breakup a frequency range [a, b] into disjoint bands of frequencies [a₀, b₀], [a₁, b₁], ..., [a_k, b_k]
 - Each cell phone tower (simplifying) gets one band
 - Constraint: nearby towers cannot be assigned same band, otherwise signals will interference
- Problem: given k bands and some region with n towers, is there a way to assign the bands to avoid interference?
- Can reduce to k-coloring by creating interference/conflict graph on towers.

3-Coloring is NP-Complete

• 3-Coloring is in NP.

- Certificate: for each node a color from {1, 2, 3}.
- Certifier: Check if for each edge (u, v), the color of u is different from that of v.
- Hardness: We will show 3-SAT \leq_P 3-Coloring.

• φ : Given **3SAT** formula (i.e., **3**CNF formula).

- φ : Given **3SAT** formula (i.e., **3**CNF formula).
- φ : variables x_1, \ldots, x_n and clauses C_1, \ldots, C_m .

- φ : Given **3SAT** formula (i.e., **3**CNF formula).
- $\ \ \, \varphi$: variables x_1,\ldots,x_n and clauses C_1,\ldots,C_m .
- **③** Create graph G_{φ} s.t. G_{φ} 3-colorable $\iff \varphi$ satisfiable.
 - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} .

- φ : Given **3SAT** formula (i.e., **3**CNF formula).
- **③** Create graph G_{φ} s.t. G_{φ} 3-colorable $\iff \varphi$ satisfiable.
 - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} .
 - create triangle with node True, False, Base

- φ : Given **3SAT** formula (i.e., **3**CNF formula).
- **③** Create graph G_{φ} s.t. G_{φ} 3-colorable $\iff \varphi$ satisfiable.
 - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} .
 - create triangle with node True, False, Base
 - for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base

- φ : Given **3SAT** formula (i.e., **3**CNF formula).
- $\ \ \, \varphi$: variables x_1,\ldots,x_n and clauses C_1,\ldots,C_m .
- **③** Create graph G_{φ} s.t. G_{φ} 3-colorable $\iff \varphi$ satisfiable.
 - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} .
 - create triangle with node True, False, Base

 - If graph is 3-colored, either v_i or v
 _i gets the same color as True. Interpret this as a truth assignment to v_i

- φ : Given **3SAT** formula (i.e., **3**CNF formula).
- **③** Create graph G_{φ} s.t. G_{φ} 3-colorable $\iff \varphi$ satisfiable.
 - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} .
 - create triangle with node True, False, Base
 - for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
 - If graph is 3-colored, either v_i or v
 _i gets the same color as True. Interpret this as a truth assignment to v_i
 - Need to add constraints to ensure clauses are satisfied (next phase)

Miller, Hassanieh (UIUC)

3 color this gadget. Clicker question

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the two nodes are already colored as indicated).

(A) Yes.(B) No.

3 color this gadget II Clicker question

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the two nodes are already colored as indicated).

(A) Yes.(B) No.

Clause Satisfiability Gadget

• For each clause $C_j = (a \lor b \lor c)$, create a small gadget graph

- gadget graph connects to nodes corresponding to *a*, *b*, *c*
- needs to implement OR

Clause Satisfiability Gadget

• For each clause $C_j = (a \lor b \lor c)$, create a small gadget graph

- gadget graph connects to nodes corresponding to *a*, *b*, *c*
- needs to implement OR
- OR-gadget-graph:

OR-Gadget Graph

Property: if *a*, *b*, *c* are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

Property: if one of a, b, c is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Reduction

- create triangle with nodes True, False, Base
- for each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base

Reduction

Claim

No legal **3**-coloring of above graph (with coloring of nodes **T**, **F**, **B** fixed) in which **a**, **b**, **c** are colored False. If any of **a**, **b**, **c** are colored True then there is a legal **3**-coloring of above graph.

3 coloring of the clause gadget

Reduction Outline

Example

$\varphi = (u \lor \neg v \lor w) \land (v \lor x \lor \neg y)$

arphi is satisfiable implies G_{arphi} is 3-colorable

• if x_i is assigned True, color v_i True and \bar{v}_i False

- arphi is satisfiable implies G_{arphi} is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

- arphi is satisfiable implies G_{arphi} is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

arphi is satisfiable implies G_{arphi} is 3-colorable

- if x_i is assigned True, color v_i True and \bar{v}_i False
- for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- $\pmb{G}_{\pmb{arphi}}$ is 3-colorable implies \pmb{arphi} is satisfiable
 - if *v_i* is colored True then set *x_i* to be True, this is a legal truth assignment

- arphi is satisfiable implies G_{arphi} is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause C_j = (a ∨ b ∨ c) at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- G_{φ} is 3-colorable implies φ is satisfiable
 - if *v_i* is colored True then set *x_i* to be True, this is a legal truth assignment
 - consider any clause C_j = (a ∨ b ∨ c). it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

