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Part I

NP-Completeness
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NP: Non-deterministic polynomial

Definition
A decision problem is in NP, if it has a polynomial time certifier, for
all the all the YES instances.

Definition
A decision problem is in co-NP, if it has a polynomial time certifier,
for all the all the NO instances.

Example
1 3SAT is in NP.

2 But Not3SAT is in co-NP.
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“Hardest” Problems

Question
What is the hardest problem in NP? How do we define it?

Towards a definition
1 Hardest problem must be in NP.

2 Hardest problem must be at least as “difficult” as every other
problem in NP.
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NP-Complete Problems

Definition
A problem X is said to be NP-Complete if

1 X ∈ NP, and

2 (Hardness) For any Y ∈ NP, Y ≤P X.
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Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.
⇒ Suppose X can be solved in polynomial time

1 Let Y ∈ NP. We know Y ≤P X.
2 We showed that if Y ≤P X and X can be solved in polynomial

time, then Y can be solved in polynomial time.
3 Thus, every problem Y ∈ NP is such that Y ∈ P; NP ⊆ P.
4 Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time
algorithm for X .
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NP-Hard Problems

Definition
A problem X is said to be NP-Hard if

1 (Hardness) For any Y ∈ NP, we have that Y ≤P X.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not
NP-Complete.
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Consequences of proving NP-Completeness

If X is NP-Complete

1 Since we believe P 6= NP,

2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X .
(This is proof by mob opinion — take with a grain of salt.)
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NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.
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Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

Need to show

1 SAT is in NP.

2 every NP problem X reduces to SAT.

Will see proof in next lecture.

Steve Cook won the Turing award for his theorem.
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Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

1 Show that X is in NP.

2 Give a polynomial-time reduction from a known NP-Complete
problem such as SAT to X

SAT ≤P X implies that every NP problem Y ≤P X . Why?
Transitivity of reductions:

Y ≤P SAT and SAT ≤P X and hence Y ≤P X .
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3-SAT is NP-Complete

3-SAT is in NP
SAT ≤P 3-SAT as we saw
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NP-Completeness via Reductions

1 SAT is NP-Complete due to Cook-Levin theorem

2 SAT ≤P 3-SAT

3 3-SAT ≤P Independent Set

4 Independent Set ≤P Vertex Cover

5 Independent Set ≤P Clique

6 3-SAT ≤P 3-Color

7 3-SAT ≤P Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of
science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!
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Part II

Reducing 3-SAT to Independent
Set
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Independent Set

Problem: Independent Set

Instance: A graph G, integer k .
Question: Is there an independent set in G of size k?
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3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.

Gϕ should be constructable in time polynomial in size of ϕ

Importance of reduction: Although 3SAT is much more expressive, it
can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work
for other kinds of boolean formulas.
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Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true

. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.
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The Reduction

1 Gϕ will have one vertex for each literal in a clause

2 Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)
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Correctness

Proposition

ϕ is satisfiable iff Gϕ has an independent set of size k (= number of
clauses in ϕ).

Proof.
⇒ Let a be the truth assignment satisfying ϕ

1 Pick one of the vertices, corresponding to true literals under a,
from each triangle. This is an independent set of the
appropriate size. Why?
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Correctness (contd)

Proposition

ϕ is satisfiable iff Gϕ has an independent set of size k (= number of
clauses in ϕ).

Proof.
⇐ Let S be an independent set of size k

1 S must contain exactly one vertex from each clause
2 S cannot contain vertices labeled by conflicting literals
3 Thus, it is possible to obtain a truth assignment that makes in

the literals in S true; such an assignment satisfies one literal in
every clause
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Part III

NPCompleteness of Hamiltonian Cycle
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Directed Hamiltonian Cycle

Input Given a directed graph G = (V ,E) with n vertices

Goal Does G have a Hamiltonian cycle?

A Hamiltonian cycle is a cycle in the graph that
visits every vertex in G exactly once
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Is the following graph Hamiltonianan?

(A) Yes.

(B) No.
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Directed Hamiltonian Cycle is NP-Complete

Directed Hamiltonian Cycle is in NP: exercise

Hardness: We will show
3-SAT ≤P Directed Hamiltonian Cycle
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Reduction

Given 3-SAT formula ϕ create a graph Gϕ such that

Gϕ has a Hamiltonian cycle if and only if ϕ is satisfiable

Gϕ should be constructible from ϕ by a polynomial time
algorithm A

Notation: ϕ has n variables x1, x2, . . . , xn and m clauses
C1,C2, . . . ,Cm.
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Reduction: First Ideas

Viewing SAT: Assign values to n variables, and each clauses has
3 ways in which it can be satisfied.

Construct graph with 2n Hamiltonian cycles, where each cycle
corresponds to some boolean assignment.

Then add more graph structure to encode constraints on
assignments imposed by the clauses.
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The Reduction: Phase I

Traverse path i from left to right iff xi is set to true

Each path has 3(m + 1) nodes where m is number of clauses in
ϕ; nodes numbered from left to right (1 to 3m + 3)

x2

x3

x1

x4
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The Reduction: Phase II

Add vertex cj for clause Cj . cj has edge from vertex 3j and to
vertex 3j + 1 on path i if xi appears in clause Cj , and has edge
from vertex 3j + 1 and to vertex 3j if ¬xi appears in Cj .

x2

x3

¬x1 ∨ ¬x2 ∨ ¬x3

x1

x1 ∨ ¬x2 ∨ x4

x4
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Correctness Proof

Proposition
ϕ has a satisfying assignment iff Gϕ has a Hamiltonian cycle.

Proof.
⇒ Let a be the satisfying assignment for ϕ. Define Hamiltonian

cycle as follows

If a(xi ) = 1 then traverse path i from left to right
If a(xi ) = 0 then traverse path i from right to left
For each clause, path of at least one variable is in the “right”
direction to splice in the node corresponding to clause
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Hamiltonian Cycle⇒ Satisfying assignment

Suppose Π is a Hamiltonian cycle in Gϕ

If Π enters cj (vertex for clause Cj ) from vertex 3j on path i
then it must leave the clause vertex on edge to 3j + 1 on the
same path i

If not, then only unvisited neighbor of 3j + 1 on path i is 3j + 2
Thus, we don’t have two unvisited neighbors (one to enter
from, and the other to leave) to have a Hamiltonian Cycle

Similarly, if Π enters cj from vertex 3j + 1 on path i then it
must leave the clause vertex cj on edge to 3j on path i
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Example

x2

x3

x1

x4
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Hamiltonian Cycle =⇒ Satisfying assignment

(contd)

Thus, vertices visited immediately before and after Ci are
connected by an edge

We can remove cj from cycle, and get Hamiltonian cycle in
G − cj

Consider Hamiltonian cycle in G − {c1, . . . cm}; it traverses
each path in only one direction, which determines the truth
assignment
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Hamiltonian Cycle

Problem
Input Given undirected graph G = (V ,E)

Goal Does G have a Hamiltonian cycle? That is, is there a
cycle that visits every vertex exactly one (except start
and end vertex)?
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NP-Completeness

Theorem
Hamiltonian cycle problem for undirected graphs is
NP-Complete.

Proof.
The problem is in NP; proof left as exercise.

Hardness proved by reducing Directed Hamiltonian Cycle to this
problem
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Reduction Sketch

Goal: Given directed graph G , need to construct undirected graph
G ′ such that G has Hamiltonian Path iff G ′ has Hamiltonian path

Reduction

Replace each vertex v by 3 vertices: vin, v , and vout

A directed edge (a, b) is replaced by edge (aout, bin)

b

a

v

c

d

bo

vi

ao
v vo

di

ci
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Reduction: Wrapup

The reduction is polynomial time (exercise)

The reduction is correct (exercise)
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Part IV

NP-Completeness of Graph Coloring
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Graph Coloring

Problem: Graph Coloring

Instance: G = (V ,E): Undirected graph, integer k .
Question: Can the vertices of the graph be colored
using k colors so that vertices connected by an edge do
not get the same color?
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Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V ,E): Undirected graph.
Question: Can the vertices of the graph be colored
using 3 colors so that vertices connected by an edge do
not get the same color?
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Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V ,E): Undirected graph.
Question: Can the vertices of the graph be colored
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not get the same color?
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Graph Coloring

1 Observation: If G is colored with k colors then each color class
(nodes of same color) form an independent set in G .

2 G can be partitioned into k independent sets iff G is
k-colorable.

3 Graph 2-Coloring can be decided in polynomial time.

4 G is 2-colorable iff G is bipartite!

5 There is a linear time algorithm to check if G is bipartite using
BFS (we saw this earlier).
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Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) k registers such that variables needed
at the same time are not assigned to the same register

Interference Graph
Vertices are variables, and there is an edge between two vertices, if
the two variables are “live” at the same time.

Observations
[Chaitin] Register allocation problem is equivalent to coloring the
interference graph with k colors

Moreover, 3-COLOR ≤P k-Register Allocation, for any
k ≥ 3
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Class Room Scheduling

1 Given n classes and their meeting times, are k rooms sufficient?

2 Reduce to Graph k-Coloring problem
3 Create graph G

a node vi for each class i
an edge between vi and vj if classes i and j conflict

4 Exercise: G is k-colorable iff k rooms are sufficient.
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Frequency Assignments in Cellular Networks

1 Cellular telephone systems that use Frequency Division Multiple
Access (FDMA) (example: GSM in Europe and Asia and AT&T
in USA)

Breakup a frequency range [a, b] into disjoint bands of
frequencies [a0, b0], [a1, b1], . . . , [ak , bk ]
Each cell phone tower (simplifying) gets one band
Constraint: nearby towers cannot be assigned same band,
otherwise signals will interference

2 Problem: given k bands and some region with n towers, is there
a way to assign the bands to avoid interference?

3 Can reduce to k-coloring by creating interference/conflict graph
on towers.
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3-Coloring is NP-Complete

3-Coloring is in NP.

Certificate: for each node a color from {1, 2, 3}.
Certifier: Check if for each edge (u, v), the color of u is
different from that of v .

Hardness: We will show 3-SAT ≤P 3-Coloring.
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Reduction Idea

1 ϕ: Given 3SAT formula (i.e., 3CNF formula).

2 ϕ: variables x1, . . . , xn and clauses C1, . . . ,Cm.

3 Create graph Gϕ s.t. Gϕ 3-colorable ⇐⇒ ϕ satisfiable.

encode assignment x1, . . . , xn in colors assigned nodes of Gϕ.
create triangle with node True, False, Base
for each variable xi two nodes vi and v̄i connected in a triangle
with common Base
If graph is 3-colored, either vi or v̄i gets the same color as True.
Interpret this as a truth assignment to vi
Need to add constraints to ensure clauses are satisfied (next
phase)
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Figure

v1

v1

v2

v2
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vn
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Base
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3 color this gadget.
Clicker question

You are given three colors: red, green and blue. Can the following
graph be three colored in a valid way (assuming the two nodes are
already colored as indicated).

(A) Yes.

(B) No.
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3 color this gadget II
Clicker question

You are given three colors: red, green and blue. Can the following
graph be three colored in a valid way (assuming the two nodes are
already colored as indicated).

(A) Yes.

(B) No.
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Clause Satisfiability Gadget

1 For each clause Cj = (a ∨ b ∨ c), create a small gadget graph

gadget graph connects to nodes corresponding to a, b, c
needs to implement OR

2 OR-gadget-graph:
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a

b

c

a ∨ b

a ∨ b ∨ c
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OR-Gadget Graph

Property: if a, b, c are colored False in a 3-coloring then output node
of OR-gadget has to be colored False.

Property: if one of a, b, c is colored True then OR-gadget can be
3-colored such that output node of OR-gadget is colored True.
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Reduction

create triangle with nodes True, False, Base

for each variable xi two nodes vi and v̄i connected in a triangle
with common Base

for each clause Cj = (a ∨ b ∨ c), add OR-gadget graph with
input nodes a, b, c and connect output node of gadget to both
False and Base

a

b

c

a ∨ b

a ∨ b ∨ c

T

F

Base
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Reduction

a

b

c

a ∨ b

a ∨ b ∨ c

T

F

Base

Claim
No legal 3-coloring of above graph (with coloring of nodes T ,F ,B
fixed) in which a, b, c are colored False. If any of a, b, c are colored
True then there is a legal 3-coloring of above graph.
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3 coloring of the clause gadget
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Reduction Outline

Example

ϕ = (u ∨ ¬v ∨ w) ∧ (v ∨ x ∨ ¬y)

or
gates

Palette

Variable and nega-

tions have com-

plemantory colors.

Literals get colors

T or F.

T F

B
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Correctness of Reduction

ϕ is satisfiable implies Gϕ is 3-colorable

if xi is assigned True, color vi True and v̄i False

for each clause Cj = (a ∨ b ∨ c) at least one of a, b, c is
colored True. OR-gadget for Cj can be 3-colored such that
output is True.

Gϕ is 3-colorable implies ϕ is satisfiable

if vi is colored True then set xi to be True, this is a legal truth
assignment

consider any clause Cj = (a ∨ b ∨ c). it cannot be that all
a, b, c are False. If so, output of OR-gadget for Cj has to be
colored False but output is connected to Base and False!
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Graph generated in reduction...
... from 3SAT to 3COLOR

(a ∨ b ∨ c) ∧
(
b ∨ c ∨ d

)
∧(a ∨ c ∨ d) ∧

(
a ∨ b ∨ d

)

d

X

ca b

T

a b c d

F
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