Algorithms \& Models of Computation

 CS/ECE 374 B, Spring 2020
NP and NP Completeness

Lecture 23
Wednesday, April 29, 2020

Part I

NP-Completeness

NP: Non-deterministic polynomial

Definition

A decision problem is in NP, if it has a polynomial time certifier, for all the all the YES instances.

Definition

A decision problem is in co-NP, if it has a polynomial time certifier, for all the all the NO instances.

Example

(1) 3SAT is in NP.
(2) But Not3SAT is in co-NP.

In the beginning...

In the beginning...

Undecidable

In the beginning...

Undecidable

In the beginning...

"Hardest" Problems

Question

What is the hardest problem in NP? How do we define it?

Towards a definition

(1) Hardest problem must be in NP.
(2) Hardest problem must be at least as "difficult" as every other problem in NP.

NP-Complete Problems

Definition

A problem X is said to be NP-Complete if
(1) $X \in N P$, and
(2) (Hardness) For any $\mathbf{Y} \in \mathbf{N P}, \mathbf{Y} \leq_{P} \mathbf{X}$.

Solving NP-Complete Problems

Proposition

Suppose \boldsymbol{X} is NP-Complete. Then \boldsymbol{X} can be solved in polynomial time if and only if $\mathrm{P}=\mathrm{NP}$.

Proof.

\Rightarrow Suppose X can be solved in polynomial time
(0) Let $\boldsymbol{Y} \in \mathrm{NP}$. We know $\mathbf{Y} \leq_{p} \mathbf{X}$.
(2) We showed that if $Y \leq_{P} \mathbf{X}$ and \boldsymbol{X} can be solved in polynomial time, then \boldsymbol{Y} can be solved in polynomial time.
(3) Thus, every problem $\boldsymbol{Y} \in \mathbf{N P}$ is such that $\boldsymbol{Y} \in P ; N P \subseteq P$.
(c) Since $\mathbf{P} \subseteq N P$, we have $\mathbf{P}=\mathbf{N P}$.
\Leftarrow Since $\mathbf{P}=\mathbf{N P}$, and $X \in \mathbf{N P}$, we have a polynomial time algorithm for \boldsymbol{X}.

NP-Hard Problems

Definition

A problem X is said to be NP-Hard if
(1) (Hardness) For any $Y \in N P$, we have that $Y \leq_{P} \mathbf{X}$.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not NP-Complete.

Consequences of proving NP-Completeness

If X is NP-Complete
(1) Since we believe $\mathbf{P} \neq \mathrm{NP}$,
(2) and solving X implies $P=N P$.
X is unlikely to be efficiently solvable.

Consequences of proving NP-Completeness

If X is NP-Complete
(1) Since we believe $\mathbf{P} \neq \mathrm{NP}$,
(2) and solving X implies $P=N P$.
X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for \boldsymbol{X}.

Consequences of proving NP-Completeness

If X is NP-Complete
(1) Since we believe $\mathbf{P} \neq \mathrm{NP}$,
(2) and solving X implies $P=N P$.
X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for \boldsymbol{X}.

Consequences of proving NP-Completeness

If X is NP-Complete
(1) Since we believe $\mathbf{P} \neq \mathrm{NP}$,
(2) and solving X implies $\mathrm{P}=\mathrm{NP}$.
\boldsymbol{X} is unlikely to be efficiently solvable.
At the very least, many smart people before you have failed to find an efficient algorithm for \boldsymbol{X}.
(This is proof by mob opinion - take with a grain of salt.)

NP-Complete Problems

Question

Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

Need to show
(1) SAT is in NP.
(2) every NP problem X reduces to SAT.

Will see proof in next lecture.

Steve Cook won the Turing award for his theorem.

Proving that a problem X is NP-Complete

To prove \boldsymbol{X} is NP-Complete, show
(1) Show that \boldsymbol{X} is in NP.
(2) Give a polynomial-time reduction from a known NP-Complete problem such as SAT to \boldsymbol{X}

Proving that a problem X is NP-Complete

To prove \boldsymbol{X} is NP-Complete, show
(1) Show that \boldsymbol{X} is in NP.
(2) Give a polynomial-time reduction from a known NP-Complete problem such as SAT to \boldsymbol{X}

SAT $\leq_{p} X$ implies that every NP problem $Y \leq_{p} X$. Why?

Proving that a problem X is NP-Complete

To prove \boldsymbol{X} is NP-Complete, show
(1) Show that \boldsymbol{X} is in NP.
(2) Give a polynomial-time reduction from a known NP-Complete problem such as SAT to \boldsymbol{X}

SAT $\leq_{p} X$ implies that every NP problem $Y \leq_{p} X$. Why? Transitivity of reductions:
$Y \leq_{P} S A T$ and $S A T \leq_{P} X$ and hence $Y \leq_{P} X$.

is NP-Complete

- 3-SAT is in NP
- SAT \leq_{p} 3-SAT as we saw

NP-Completeness via Reductions

(1) SAT is NP-Complete due to Cook-Levin theorem
(2) SAT $\leq_{P} 3-\mathrm{SAT}$
(3) 3-SAT \leq_{p} Independent Set
(4) Independent Set \leq_{P} Vertex Cover
(5) Independent Set \leq_{P} Clique
(6) 3-SAT \leq_{P} 3-Color
(3) 3-SAT \leq_{P} Hamiltonian Cycle

NP-Completeness via Reductions

(1) SAT is NP-Complete due to Cook-Levin theorem
(2) SAT $\leq_{p} 3-$ SAT
(3-SAT \leq_{p} Independent Set

- Independent Set \leq_{p} Vertex Cover
(0. Independent Set \leq_{p} Clique
(0) 3-SAT $\leq_{p} 3$-Color
(0) 3-SAT \leq_{P} Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

Part II

Reducing 3-SAT to Independent Set

Independent Set

Problem: Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size k ?

3 SAT \leq_{p} Independent Set

The reduction 3 SAT \leq_{p} Independent Set

Input: Given a 3CNF formula φ
Goal: Construct a graph \boldsymbol{G}_{φ} and number k such that \boldsymbol{G}_{φ} has an independent set of size k if and only if φ is satisfiable.

3 SAT \leq_{p} Independent Set

The reduction 3 SAT \leq_{p} Independent Set

Input: Given a 3 CNF formula φ
Goal: Construct a graph G_{φ} and number \boldsymbol{k} such that G_{φ} has an independent set of size \boldsymbol{k} if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

3 SAT \leq_{p} Independent Set

The reduction 3 SAT \leq_{p} Independent Set

Input: Given a 3CNF formula φ
Goal: Construct a graph G_{φ} and number \boldsymbol{k} such that G_{φ} has an independent set of size \boldsymbol{k} if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas - reduction would not work for other kinds of boolean formulas.

Interpreting 3SAT

There are two ways to think about 3SAT

Interpreting 3SAT

There are two ways to think about 3SAT
(1) Find a way to assign $0 / 1$ (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.

Interpreting 3SAT

There are two ways to think about 3SAT
(1) Find a way to assign $0 / 1$ (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
(2) Pick a literal from each clause and find a truth assignment to make all of them true

Interpreting 3SAT

There are two ways to think about 3SAT
(1) Find a way to assign $0 / 1$ (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
(2) Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_{i} and $\neg x_{i}$
We will take the second view of 3SAT to construct the reduction.

The Reduction

(1) G_{φ} will have one vertex for each literal in a clause

Figure: Graph for $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

The Reduction

(1) G_{φ} will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

Figure: Graph for
$\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

The Reduction

(1) G_{φ} will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

Figure: Graph for
$\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

The Reduction

(1) G_{φ} will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
(3) Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict

Figure: Graph for
$\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

The Reduction

(1) G_{φ} will have one vertex for each literal in a clause
(2) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
(0) Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
(9) Take k to be the number of clauses

Figure: Graph for
$\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

Correctness

Proposition

φ is satisfiable iff G_{φ} has an independent set of size \boldsymbol{k} (= number of clauses in φ).

Proof.

\Rightarrow Let a be the truth assignment satisfying φ

Correctness

Proposition

φ is satisfiable iff G_{φ} has an independent set of size \boldsymbol{k} (= number of clauses in φ).

Proof.

\Rightarrow Let a be the truth assignment satisfying φ
(1) Pick one of the vertices, corresponding to true literals under a, from each triangle. This is an independent set of the appropriate size. Why?

Correctness (contd)

Proposition

φ is satisfiable iff G_{φ} has an independent set of size \boldsymbol{k} (= number of clauses in φ).

Proof.

\Leftarrow Let S be an independent set of size k
(1) S must contain exactly one vertex from each clause
(2) S cannot contain vertices labeled by conflicting literals
(3) Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause

Part III

NPCompleteness of Hamiltonian Cycle

Directed Hamiltonian Cycle

Input Given a directed graph $G=(V, E)$ with n vertices Goal Does G have a Hamiltonian cycle?

Directed Hamiltonian Cycle

Input Given a directed graph $G=(V, E)$ with n vertices Goal Does G have a Hamiltonian cycle?

- A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once

Is the following graph Hamiltonianan?

(A) Yes.
(B) No.

Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP: exercise
- Hardness: We will show 3-SAT \leq_{P} Directed Hamiltonian Cycle

Reduction

Given 3-SAT formula φ create a graph G_{φ} such that

- G_{φ} has a Hamiltonian cycle if and only if φ is satisfiable
- G_{φ} should be constructible from φ by a polynomial time algorithm \mathcal{A}

Notation: φ has n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses
$C_{1}, C_{2}, \ldots, C_{m}$.

Reduction: First Ideas

- Viewing SAT: Assign values to \boldsymbol{n} variables, and each clauses has 3 ways in which it can be satisfied.
- Construct graph with $2^{\boldsymbol{n}}$ Hamiltonian cycles, where each cycle corresponds to some boolean assignment.
- Then add more graph structure to encode constraints on assignments imposed by the clauses.

The Reduction: Phase I

- Traverse path \boldsymbol{i} from left to right iff x_{i} is set to true
- Each path has $\mathbf{3}(\boldsymbol{m}+1)$ nodes where \boldsymbol{m} is number of clauses in φ; nodes numbered from left to right (1 to $3 m+3$)

The Reduction: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 j+1$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause C_{j}, and has edge from vertex $3 j+1$ and to vertex $3 j$ if $\neg x_{i}$ appears in C_{j}.

$$
x_{1} \vee \neg x_{2} \vee x_{4} \quad \neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
$$

The Reduction: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 j+1$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause C_{j}, and has edge from vertex $3 j+1$ and to vertex $3 j$ if $\neg x_{i}$ appears in C_{j}.

The Reduction: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 j+1$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause C_{j}, and has edge from vertex $3 j+1$ and to vertex $3 j$ if $\neg x_{\boldsymbol{i}}$ appears in C_{j}.

The Reduction: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 j+1$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause C_{j}, and has edge from vertex $3 j+1$ and to vertex $3 j$ if $\neg x_{i}$ appears in C_{j}.

The Reduction: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 j+1$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause C_{j}, and has edge from vertex $3 j+1$ and to vertex $3 j$ if $\neg x_{i}$ appears in C_{j}.

The Reduction: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 j+1$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause C_{j}, and has edge from vertex $3 j+1$ and to vertex $3 j$ if $\neg x_{i}$ appears in C_{j}.

The Reduction: Phase II

- Add vertex $\boldsymbol{c}_{\boldsymbol{j}}$ for clause $\boldsymbol{C}_{\boldsymbol{j}} . \boldsymbol{c}_{\boldsymbol{j}}$ has edge from vertex $3 \boldsymbol{j}$ and to vertex $3 j+1$ on path \boldsymbol{i} if $\boldsymbol{x}_{\boldsymbol{i}}$ appears in clause C_{j}, and has edge from vertex $3 j+1$ and to vertex $3 j$ if $\neg x_{i}$ appears in C_{j}.

Correctness Proof

Proposition

φ has a satisfying assignment iff G_{φ} has a Hamiltonian cycle.

Proof.

\Rightarrow Let \boldsymbol{a} be the satisfying assignment for φ. Define Hamiltonian cycle as follows

- If $\boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=\mathbf{1}$ then traverse path \boldsymbol{i} from left to right
- If $\boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=\mathbf{0}$ then traverse path \boldsymbol{i} from right to left
- For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause

Hamiltonian Cycle \Rightarrow Satisfying assignment

Suppose $\boldsymbol{\Pi}$ is a Hamiltonian cycle in \boldsymbol{G}_{φ}

- If Π enters c_{j} (vertex for clause C_{j}) from vertex $3 j$ on path i then it must leave the clause vertex on edge to $3 j+\mathbf{1}$ on the same path i
- If not, then only unvisited neighbor of $\mathbf{3 j + 1}$ on path \boldsymbol{i} is $\mathbf{3 j + 2}$
- Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- Similarly, if $\boldsymbol{\Pi}$ enters c_{j} from vertex $3 j+\mathbf{1}$ on path \boldsymbol{i} then it must leave the clause vertex c_{j} on edge to $3 j$ on path i

Example

Hamiltonian Cycle \Longrightarrow Satisfying assignment (contd)

- Thus, vertices visited immediately before and after C_{i} are connected by an edge
- We can remove $\boldsymbol{c}_{\boldsymbol{j}}$ from cycle, and get Hamiltonian cycle in $G-c_{j}$
- Consider Hamiltonian cycle in $G-\left\{c_{1}, \ldots c_{m}\right\}$; it traverses each path in only one direction, which determines the truth assignment

Hamiltonian Cycle

Problem

Input Given undirected graph $G=(V, E)$

Goal Does G have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

NP-Completeness

Theorem
Hamiltonian cycle problem for undirected graphs is NP-Complete.

Proof.

- The problem is in NP; proof left as exercise.
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem

Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G^{\prime} such that G has Hamiltonian Path iff G^{\prime} has Hamiltonian path

Reduction

Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G^{\prime} such that G has Hamiltonian Path iff G^{\prime} has Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: $\boldsymbol{v}_{\boldsymbol{i n}}, \boldsymbol{v}$, and $\boldsymbol{v}_{\text {out }}$

Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G^{\prime} such that G has Hamiltonian Path iff G^{\prime} has Hamiltonian path

Reduction

- Replace each vertex \boldsymbol{v} by 3 vertices: $\boldsymbol{v}_{\boldsymbol{i n}}, \boldsymbol{v}$, and $\boldsymbol{v}_{\text {out }}$
- A directed edge $(\boldsymbol{a}, \boldsymbol{b})$ is replaced by edge $\left(\boldsymbol{a}_{\text {out }}, \boldsymbol{b}_{\text {in }}\right)$

Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G^{\prime} such that G has Hamiltonian Path iff G^{\prime} has Hamiltonian path

Reduction

- Replace each vertex \boldsymbol{v} by 3 vertices: $\boldsymbol{v}_{\boldsymbol{i n}}, \boldsymbol{v}$, and $\boldsymbol{v}_{\text {out }}$
- A directed edge $(\boldsymbol{a}, \boldsymbol{b})$ is replaced by edge $\left(\boldsymbol{a}_{\text {out }}, \boldsymbol{b}_{\boldsymbol{i n}}\right)$

Reduction: Wrapup

- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)

Part IV

NP-Completeness of Graph Coloring

Graph Coloring

Problem: Graph Coloring

Instance: $G=(V, E)$: Undirected graph, integer k. Question: Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

Graph 3-Coloring

Problem: 3 Coloring

Instance: $G=(V, E)$: Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?

Graph 3-Coloring

Problem: 3 Coloring

Instance: $G=(V, E)$: Undirected graph. Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?

Graph Coloring

Graph Coloring

(1) Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in G.

Graph Coloring

(1) Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in G.
(2) \boldsymbol{G} can be partitioned into \boldsymbol{k} independent sets iff \boldsymbol{G} is k-colorable.

Graph Coloring

(1) Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in G.
(2) \boldsymbol{G} can be partitioned into \boldsymbol{k} independent sets iff \boldsymbol{G} is k-colorable.
(3) Graph 2-Coloring can be decided in polynomial time.

Graph Coloring

(1) Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in G.
(2) \boldsymbol{G} can be partitioned into \boldsymbol{k} independent sets iff \boldsymbol{G} is k-colorable.
(3) Graph 2-Coloring can be decided in polynomial time.
(4) G is 2 -colorable iff G is bipartite!

Graph Coloring

(1) Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G.
(2) \boldsymbol{G} can be partitioned into \boldsymbol{k} independent sets iff \boldsymbol{G} is k-colorable.
(3) Graph 2-Coloring can be decided in polynomial time.
(4) G is 2 -colorable iff G is bipartite!
(5) There is a linear time algorithm to check if G is bipartite using BFS (we saw this earlier).

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) \boldsymbol{k} registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with \boldsymbol{k} colors
- Moreover, 3-COLOR \leq_{p} k-Register Allocation, for any $k \geq 3$

Class Room Scheduling

Class Room Scheduling

(1) Given \boldsymbol{n} classes and their meeting times, are \boldsymbol{k} rooms sufficient?

Class Room Scheduling

(1) Given \boldsymbol{n} classes and their meeting times, are k rooms sufficient?
(2) Reduce to Graph k-Coloring problem

Class Room Scheduling

(1) Given \boldsymbol{n} classes and their meeting times, are k rooms sufficient?
(2) Reduce to Graph \boldsymbol{k}-Coloring problem
(3) Create graph G

- a node $\boldsymbol{v}_{\boldsymbol{i}}$ for each class \boldsymbol{i}
- an edge between $\boldsymbol{v}_{\boldsymbol{i}}$ and $\boldsymbol{v}_{\boldsymbol{j}}$ if classes \boldsymbol{i} and \boldsymbol{j} conflict

Class Room Scheduling

(1) Given \boldsymbol{n} classes and their meeting times, are k rooms sufficient?
(2) Reduce to Graph \boldsymbol{k}-Coloring problem

- Create graph G
- a node $\boldsymbol{v}_{\boldsymbol{i}}$ for each class \boldsymbol{i}
- an edge between $\boldsymbol{v}_{\boldsymbol{i}}$ and $\boldsymbol{v}_{\boldsymbol{j}}$ if classes \boldsymbol{i} and \boldsymbol{j} conflict
(0) Exercise: \boldsymbol{G} is \boldsymbol{k}-colorable iff \boldsymbol{k} rooms are sufficient.

Frequency Assignments in Cellular Networks

(1) Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT\&T in USA)

- Breakup a frequency range $[\boldsymbol{a}, \boldsymbol{b}]$ into disjoint bands of frequencies $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Frequency Assignments in Cellular Networks

(1) Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT\&T in USA)

- Breakup a frequency range $[\boldsymbol{a}, \boldsymbol{b}]$ into disjoint bands of frequencies $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference
(2) Problem: given \boldsymbol{k} bands and some region with \boldsymbol{n} towers, is there a way to assign the bands to avoid interference?

Frequency Assignments in Cellular Networks

(1) Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT\&T in USA)

- Breakup a frequency range $[\boldsymbol{a}, \boldsymbol{b}]$ into disjoint bands of frequencies $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference
(2) Problem: given \boldsymbol{k} bands and some region with \boldsymbol{n} towers, is there a way to assign the bands to avoid interference?
(3) Can reduce to \boldsymbol{k}-coloring by creating interference/conflict graph on towers.

3-Coloring is NP-Complete

- 3-Coloring is in NP.
- Certificate: for each node a color from $\{\mathbf{1}, \mathbf{2}, \mathbf{3}\}$.
- Certifier: Check if for each edge ($\boldsymbol{u}, \boldsymbol{v}$), the color of \boldsymbol{u} is different from that of \boldsymbol{v}.
- Hardness: We will show 3-SAT \leq_{p} 3-Coloring.

Reduction Idea

Reduction Idea

(1) φ : Given 3SAT formula (i.e., 3CNF formula).

Reduction Idea

(1) φ : Given 3SAT formula (i.e., 3CNF formula).
(2) φ : variables x_{1}, \ldots, x_{n} and clauses C_{1}, \ldots, C_{m}.

Reduction Idea

(1) φ : Given 3SAT formula (i.e., 3 CNF formula).
(2) φ : variables x_{1}, \ldots, x_{n} and clauses C_{1}, \ldots, C_{m}.
(3) Create graph G_{φ} s.t. G_{φ} 3-colorable $\Longleftrightarrow \varphi$ satisfiable.

- encode assignment $\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ in colors assigned nodes of $\boldsymbol{G}_{\boldsymbol{\varphi}}$.

Reduction Idea

(1) φ : Given 3SAT formula (i.e., 3 CNF formula).
(2) φ : variables x_{1}, \ldots, x_{n} and clauses C_{1}, \ldots, C_{m}.
(3) Create graph G_{φ} s.t. G_{φ} 3-colorable $\Longleftrightarrow \varphi$ satisfiable.

- encode assignment $\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ in colors assigned nodes of \boldsymbol{G}_{φ}.
- create triangle with node True, False, Base

Reduction Idea

(1) φ : Given 3SAT formula (i.e., 3 CNF formula).
(2) φ : variables x_{1}, \ldots, x_{n} and clauses C_{1}, \ldots, C_{m}.
(3) Create graph G_{φ} s.t. G_{φ} 3-colorable $\Longleftrightarrow \varphi$ satisfiable.

- encode assignment $\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ in colors assigned nodes of \boldsymbol{G}_{φ}.
- create triangle with node True, False, Base
- for each variable $\boldsymbol{x}_{\boldsymbol{i}}$ two nodes $\boldsymbol{v}_{\boldsymbol{i}}$ and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ connected in a triangle with common Base

Reduction Idea

(1) φ : Given 3SAT formula (i.e., 3 CNF formula).
(2) φ : variables x_{1}, \ldots, x_{n} and clauses C_{1}, \ldots, C_{m}.
(3) Create graph G_{φ} s.t. G_{φ} 3-colorable $\Longleftrightarrow \varphi$ satisfiable.

- encode assignment $\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ in colors assigned nodes of \boldsymbol{G}_{φ}.
- create triangle with node True, False, Base
- for each variable $\boldsymbol{x}_{\boldsymbol{i}}$ two nodes $\boldsymbol{v}_{\boldsymbol{i}}$ and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ connected in a triangle with common Base
- If graph is 3-colored, either $\boldsymbol{v}_{\boldsymbol{i}}$ or $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ gets the same color as True. Interpret this as a truth assignment to $\boldsymbol{v}_{\boldsymbol{i}}$

Reduction Idea

(1) φ : Given 3SAT formula (i.e., 3 CNF formula).
(2) φ : variables x_{1}, \ldots, x_{n} and clauses C_{1}, \ldots, C_{m}.
(3) Create graph G_{φ} s.t. G_{φ} 3-colorable $\Longleftrightarrow \varphi$ satisfiable.

- encode assignment $\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ in colors assigned nodes of \boldsymbol{G}_{φ}.
- create triangle with node True, False, Base
- for each variable $\boldsymbol{x}_{\boldsymbol{i}}$ two nodes $\boldsymbol{v}_{\boldsymbol{i}}$ and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ connected in a triangle with common Base
- If graph is 3-colored, either $\boldsymbol{v}_{\boldsymbol{i}}$ or $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ gets the same color as True. Interpret this as a truth assignment to $\boldsymbol{v}_{\boldsymbol{i}}$
- Need to add constraints to ensure clauses are satisfied (next phase)

Figure

3 color this gadget.

Clicker question

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the two nodes are already colored as indicated).

(A) Yes.
(B) No.

3 color this gadget II

Clicker question

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the two nodes are already colored as indicated).

(A) Yes.
(B) No.

Clause Satisfiability Gadget

(1) For each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$, create a small gadget graph

- gadget graph connects to nodes corresponding to $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ - needs to implement OR

Clause Satisfiability Gadget

(1) For each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$, create a small gadget graph - gadget graph connects to nodes corresponding to $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ - needs to implement OR
(2) OR-gadget-graph:

OR-Gadget Graph

Property: if $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

Property: if one of $a, \boldsymbol{b}, \boldsymbol{c}$ is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Reduction

- create triangle with nodes True, False, Base
- for each variable $\boldsymbol{x}_{\boldsymbol{i}}$ two nodes $\boldsymbol{v}_{\boldsymbol{i}}$ and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ connected in a triangle with common Base
- for each clause $C_{j}=(a \vee b \vee c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base

Reduction

Claim

No legal 3-coloring of above graph (with coloring of nodes T, F, B fixed) in which a, b, c are colored False. If any of a, b, c are colored True then there is a legal 3-coloring of above graph.

3 coloring of the clause gadget

Reduction Outline

Example

$$
\varphi=(u \vee \neg v \vee w) \wedge(v \vee x \vee \neg y)
$$

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3-colorable

- if x_{i} is assigned True, color v_{i} True and \bar{v}_{i} False

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3 -colorable

- if $x_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\bar{v}_{\boldsymbol{i}}$ False
- for each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of a, b, c is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3 -colorable

- if $x_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\bar{v}_{\boldsymbol{i}}$ False
- for each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of a, b, c is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3 -colorable

- if x_{i} is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\bar{v}_{\boldsymbol{i}}$ False
- for each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of a, b, c is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.
G_{φ} is 3-colorable implies φ is satisfiable
- if $\boldsymbol{v}_{\boldsymbol{i}}$ is colored True then set $\boldsymbol{x}_{\boldsymbol{i}}$ to be True, this is a legal truth assignment

Correctness of Reduction

φ is satisfiable implies G_{φ} is 3-colorable

- if x_{i} is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\bar{v}_{\boldsymbol{i}}$ False
- for each clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of a, b, c is colored True. OR-gadget for C_{j} can be 3-colored such that output is True.
G_{φ} is 3-colorable implies φ is satisfiable
- if $\boldsymbol{v}_{\boldsymbol{i}}$ is colored True then set $\boldsymbol{x}_{\boldsymbol{i}}$ to be True, this is a legal truth assignment
- consider any clause $C_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_{j} has to be colored False but output is connected to Base and False!

Graph generated in reduction...

... from 3SAT to 3COLOR
$(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$

Graph generated in reduction...

... from 3SAT to 3COLOR
$(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$

Graph generated in reduction...

... from 3SAT to 3COLOR
$(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$

Graph generated in reduction...

... from 3SAT to 3COLOR
$(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$

Graph generated in reduction...

from 3SAT to 3COLOR

$(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$

Graph generated in reduction...

... from 3SAT to 3COLOR
$(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$

