Algorithms & Models of Computation CS/ECE 374 B, Spring 2020

NP and **NP** Completeness

Lecture 22 Friday, April 24, 2020

LATEXed: January 19, 2020 04:28

Part I

Review: Polynomial reductions

Polynomial-time Reduction

Definition

 $X \leq_P Y$: polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A such that: **1** Given an instance I_X of X, A produces an instance I_Y of Y.

- **2** \mathcal{A} runs in time polynomial in $|I_X|$. $(|I_Y| = \text{size of } I_Y)$.
- **(3)** Answer to I_X YES \iff answer to I_Y is YES.

Polynomial-time Reduction

Definition

 $X \leq_P Y$: polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A such that:

- **(**) Given an instance I_X of X, A produces an instance I_Y of Y.
- 3 \mathcal{A} runs in time polynomial in $|I_X|$. $(|I_Y| = \text{size of } I_Y)$.
- **(3)** Answer to I_X YES \iff answer to I_Y is YES.

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Polynomial-time Reduction

Definition

 $X \leq_P Y$: polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A such that:

- **(**) Given an instance I_X of X, A produces an instance I_Y of Y.
- 3 \mathcal{A} runs in time polynomial in $|I_X|$. $(|I_Y| = \text{size of } I_Y)$.
- **(3)** Answer to I_X YES \iff answer to I_Y is YES.

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

This is a Karp reduction.

Independent Set ≤_P Clique
 Clique ≤_P Independent Set.

Independent Set ≤_P Clique
 Clique ≤_P Independent Set.
 ⇒ Clique ≈_P Independent Set.

- Independent Set ≤_P Clique
 Clique ≤_P Independent Set.
 ⇒ Clique ≈_P Independent Set.
- Vertex Cover ≤_P Independent Set Independent Set ≤_P Vertex Cover.

- Independent Set ≤_P Clique
 Clique ≤_P Independent Set.
 ⇒ Clique ≈_P Independent Set.
- Vertex Cover ≤_P Independent Set Independent Set ≤_P Vertex Cover.
 ⇒ Independent Set ≈_P Vertex Cover.

- Independent Set ≤_P Clique
 Clique ≤_P Independent Set.
 ⇒ Clique ≈_P Independent Set.
- Vertex Cover ≤_P Independent Set Independent Set ≤_P Vertex Cover.
 ⇒ Independent Set ≥_P Vertex Cover.
- $\begin{array}{l} \textbf{3SAT} \leq_{P} \textbf{SAT} \\ \textbf{SAT} \leq_{P} \textbf{3SAT}. \end{array}$

- Independent Set ≤_P Clique
 Clique ≤_P Independent Set.
 ⇒ Clique ≈_P Independent Set.
- Vertex Cover ≤_P Independent Set
 Independent Set ≤_P Vertex Cover.
 ⇒ Independent Set ≥_P Vertex Cover.

③ 3SAT
$$\leq_P$$
 SAT
SAT \leq_P 3SAT.
⇒ 3SAT \cong_P SAT.

- Independent Set ≤_P Clique
 Clique ≤_P Independent Set.
 ⇒ Clique ≈_P Independent Set.
- Vertex Cover ≤_P Independent Set Independent Set ≤_P Vertex Cover.
 ⇒ Independent Set ≈_P Vertex Cover.
- **③** 3SAT \leq_P SAT SAT \leq_P 3SAT. ⇒ 3SAT \cong_P SAT.
- **③** Clique \cong_P Independent Set \cong_P Vertex Cover 3SAT. \cong_P SAT.

Part II

NP

P and NP and Turing Machines

- P: set of decision problems that have polynomial time algorithms.
- OP: set of decision problems that have polynomial time non-deterministic algorithms.
- Many natural problems we would like to solve are in NP.
- Every problem in **NP** has an exponential time algorithm
- $P \subseteq NP$
- Some problems in *NP* are in *P* (example, shortest path problem)

Big Question: Does every problem in *NP* have an efficient algorithm? Same as asking whether P = NP.

Problems with no known polynomial time algorithms

Problems

- Independent Set
- **2** Vertex Cover
- Set Cover
- SAT
- 3SAT

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Examples:

- **9** SAT formula φ : proof is a satisfying assignment.
- Independent Set in graph G and k: a subset S of vertices.
- Output Book States S

Sudoku

			2	5				
	3	6		4		8		
	4					1	6	
2								
7	6						1	9
								3
	1	5					7	
		9		8		2	4	
				3	7			

Given $n \times n$ sudoku puzzle, does it have a solution?

Miller, Hassanieh (UIUC)

Solution to the Sudoku example...

1	8	7	2	5	6	9	3	4
9	3	6	7	4	1	8	5	2
5	4	2	8	9	3	1	6	7
2	9	1	3	7	4	6	8	5
7	6	3	5	2	8	4	1	9
8	5	4	6	1	9	7	2	3
4	1	5	9	6	2	3	7	8
3	7	9	1	8	5	2	4	6
6	2	8	4	3	7	5	9	1

Certifiers

Definition

An algorithm $C(\cdot, \cdot)$ is a certifier for problem X if the following two conditions hold:

- For every $s \in X$ there is some string t such that C(s, t) = "yes"
- If $s \notin X$, C(s, t) = "no" for every t.

The string t is called a certificate or proof for s.

Efficient (polynomial time) Certifiers

Definition (Efficient Certifier.)

A certifier *C* is an **efficient certifier** for problem *X* if there is a polynomial $p(\cdot)$ such that the following conditions hold:

- For every $s \in X$ there is some string t such that C(s, t) = "yes" and $|t| \le p(|s|)$.
- If $s \notin X$, C(s, t) = "no" for every t.
- $C(\cdot, \cdot)$ runs in polynomial time.

Example: Independent Set

- Problem: Does G = (V, E) have an independent set of size $\geq k$?
 - Certificate: Set $S \subseteq V$.
 - Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge.

Example: Vertex Cover

1 Problem: Does **G** have a vertex cover of size $\leq k$?

- Certificate: $S \subseteq V$.
- Certifier: Check $|S| \leq k$ and that for every edge at least one endpoint is in S.

Example: **SAT**

1 Problem: Does formula φ have a satisfying truth assignment?

- Certificate: Assignment a of 0/1 values to each variable.
- Ortifier: Check each clause under *a* and say "yes" if all clauses are true.

Problem: Composite

Instance: A number *s*. **Question:** Is the number *s* a composite?

Problem: Composite.

- Certificate: A factor $t \leq s$ such that $t \neq 1$ and $t \neq s$.
- Ocertifier: Check that t divides s.

Problem: NFA Universality

Instance: Description of a NFA M. **Question:** Is $L(M) = \Sigma^*$, that is, does M accept all strings?

Problem: NFA Universality.

- Certificate: A DFA M' equivalent to M
- Certifier: Check that $L(M') = \Sigma^*$

Problem: NFA Universality

Instance: Description of a NFA M. **Question:** Is $L(M) = \Sigma^*$, that is, does M accept all strings?

Problem: NFA Universality.

- Certificate: A DFA M' equivalent to M
- Certifier: Check that $L(M') = \Sigma^*$

Certifier is efficient but certificate is not necessarily short! We do not know if the problem is in NP.

Problem: PCP

Instance: Two sets of binary strings $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n **Question:** Are there indices i_1, i_2, \ldots, i_k such that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k} = \beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

Post Correspondence Problem

Given: Dominoes, each with a top-word and a bottom-word.

Can one arrange them, using any number of copies of each type, so that the top and bottom strings are equal?

abb	ba	abb	а	abb	b
а	bbb	а	ab	baa	bbb

Problem: PCP

Instance: Two sets of binary strings $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n **Question:** Are there indices i_1, i_2, \ldots, i_k such that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k} = \beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

Problem: PCP

- Certificate: A sequence of indices i_1, i_2, \ldots, i_k
- **2** Certifier: Check that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k}=\beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

Problem: PCP

Instance: Two sets of binary strings $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n **Question:** Are there indices i_1, i_2, \ldots, i_k such that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k} = \beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

Problem: PCP

- Certificate: A sequence of indices i_1, i_2, \ldots, i_k
- **2** Certifier: Check that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k}=\beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

PCP = Posts Correspondence Problem and it is undecidable! Implies no finite bound on length of certificate!

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by **NP**) is the class of all problems that have efficient certifiers.

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by **NP**) is the class of all problems that have efficient certifiers.

Example

Independent Set, **Vertex Cover**, **Set Cover**, **SAT**, **3SAT**, and **Composite** are all examples of problems in **NP**.

A certifier is an algorithm C(I, c) with two inputs:

- 1: instance.
- c: proof/certificate that the instance is indeed a YES instance of the given problem.

One can think about \boldsymbol{C} as an algorithm for the original problem, if:

- Given *I*, the algorithm guesses (non-deterministically, and who knows how) a certificate *c*.
- **2** The algorithm now verifies the certificate c for the instance I.
- NP can be equivalently described using Turing machines.

Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO instances need not have a short certificate.

Example

SAT formula φ . No easy way to prove that φ is NOT satisfiable!

More on this and **co-NP** later on.

Proposition

 $\mathbf{P} \subseteq \mathbf{NP}$.

Proposition

 $\mathbf{P} \subseteq \mathbf{NP}$.

For a problem in **P** no need for a certificate!

Proof.

Consider problem $X \in \mathbf{P}$ with algorithm A. Need to demonstrate that X has an efficient certifier:

- Certifier C on input s, t, runs A(s) and returns the answer.
- **2** C runs in polynomial time.
- If $s \in X$, then for every t, C(s, t) = "yes".
- If $s \notin X$, then for every t, C(s, t) = "no".

Exponential Time

Definition

Exponential Time (denoted **EXP**) is the collection of all problems that have an algorithm which on input *s* runs in exponential time, i.e., $O(2^{\text{poly}(|s|)})$.

Exponential Time

Definition

Exponential Time (denoted **EXP**) is the collection of all problems that have an algorithm which on input *s* runs in exponential time, i.e., $O(2^{\text{poly}(|s|)})$.

Example: $O(2^n)$, $O(2^{n \log n})$, $O(2^{n^3})$, ...

NP versus **EXP**

Proposition

 $NP \subseteq EXP$.

NP versus EXP

Proposition

 $NP \subseteq EXP.$

Proof.

Let $X \in NP$ with certifier C. Need to design an exponential time algorithm for X.

- For every t, with $|t| \le p(|s|)$ run C(s, t); answer "yes" if any one of these calls returns "yes".
- 2 The above algorithm correctly solves X (exercise).
- 3 Algorithm runs in $O(q(|s| + |p(s)|)2^{p(|s|)})$, where q is the running time of C.

Examples

- **SAT**: try all possible truth assignment to variables.
- **Independent Set**: try all possible subsets of vertices.
- **Overtex Cover**: try all possible subsets of vertices.

Is NP efficiently solvable?

We know $\mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{EXP}$.

Is **NP** efficiently solvable?

```
We know \mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{EXP}.
```

Big Question

Is there are problem in NP that does not belong to P? Is P = NP?

If $\mathbf{P} = \mathbf{NP} \dots$

Or: If pigs could fly then life would be sweet.

Many important optimization problems can be solved efficiently.

If $\mathbf{P} = \mathbf{NP} \dots$

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.

If $P = NP \dots$

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web.

If $\mathbf{P} = \mathbf{NP} \dots$

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce . . .

If $\mathbf{P} = \mathbf{NP} \dots$

- Many important optimization problems can be solved efficiently.
- 2 The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce ...
- Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

If P = NP this implies that...

(A) Vertex Cover can be solved in polynomial time. (B) P = EXP. (C) EXP ⊆ P. (D) All of the above.

P versus NP

Status

Relationship between ${\bf P}$ and ${\bf NP}$ remains one of the most important open problems in mathematics/computer science.

Consensus: Most people feel/believe $P \neq NP$.

Resolving **P** versus **NP** is a Clay Millennium Prize Problem. You can win a million dollars in addition to a Turing award and major fame!

Part III

NP-Completeness

"Hardest" Problems

Question

What is the hardest problem in NP? How do we define it?

Towards a definition

- Hardest problem must be in NP.
- e Hardest problem must be at least as "difficult" as every other problem in NP.

NP-Complete Problems

Definition

A problem **X** is said to be **NP-Complete** if

- $X \in NP$, and
- **(Hardness)** For any $Y \in NP$, $Y \leq_P X$.

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Proof.

 \Rightarrow Suppose X can be solved in polynomial time

- Let $Y \in NP$. We know $Y \leq_P X$.
- We showed that if Y ≤_P X and X can be solved in polynomial time, then Y can be solved in polynomial time.
- **3** Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subseteq P$.
- Since $\mathbf{P} \subseteq \mathbf{NP}$, we have $\mathbf{P} = \mathbf{NP}$.

 \Leftarrow Since **P** = **NP**, and **X** \in **NP**, we have a polynomial time algorithm for **X**.

NP-Hard Problems

Definition

A problem **X** is said to be **NP-Hard** if

(Hardness) For any $Y \in \mathbf{NP}$, we have that $Y \leq_P X$.

An NP-Hard problem need not be in NP!

Example: Halting problem is **NP-Hard** (why?) but not **NP-Complete**.

If X is NP-Complete

- Since we believe $P \neq NP$,
- **2** and solving X implies $\mathbf{P} = \mathbf{NP}$.

X is unlikely to be efficiently solvable.

If X is NP-Complete

- Since we believe $P \neq NP$,
- **2** and solving X implies $\mathbf{P} = \mathbf{NP}$.
- X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

If X is NP-Complete

- Since we believe $P \neq NP$,
- **2** and solving X implies $\mathbf{P} = \mathbf{NP}$.
- X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

If X is NP-Complete

- Since we believe $P \neq NP$,
- **2** and solving X implies $\mathbf{P} = \mathbf{NP}$.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)

NP-Complete Problems

Question

Are there any problems that are **NP-Complete**?

Answer

Yes! Many, many problems are **NP-Complete**.

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

Need to show

- **SAT** is in **NP**.
- **every NP** problem **X** reduces to **SAT**.

Will see proof in next lecture.

Steve Cook won the Turing award for his theorem.

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show that X is in NP.
- Give a polynomial-time reduction *from* a known NP-Complete problem such as SAT to X

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show that X is in NP.
- Give a polynomial-time reduction *from* a known NP-Complete problem such as SAT to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why?

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show that X is in NP.
- Give a polynomial-time reduction *from* a known NP-Complete problem such as SAT to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

3-SAT is NP-Complete

- 3-SAT is in NP
- SAT \leq_P 3-SAT as we saw

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- **3** SAT \leq_P 3-SAT
- **3-SAT** \leq_P Independent Set
- Independent Set P Vertex Cover
- Solution Independent Set \leq_P Clique
- **3-SAT** \leq_P 3-Color
- 3-SAT \leq_P Hamiltonian Cycle

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- **2** SAT \leq_P 3-SAT
- **3-SAT** \leq_P Independent Set
- Independent Set ≤_P Vertex Cover
- **Independent Set** \leq_P Clique
- **3-SAT** \leq_P 3-Color
- **③** 3-SAT \leq_P Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!

Part IV

Reducing 3-SAT to Independent Set

Problem: Independent Set

Instance: A graph G, integer k. **Question:** Is there an independent set in G of size k?

$3SAT \leq_P Independent Set$

The reduction **3SAT** \leq_P **Independent Set**

Input: Given a **3CNF** formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable.
The reduction **3SAT** \leq_P **Independent Set**

Input: Given a 3CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

The reduction **3SAT** \leq_P **Independent Set**

Input: Given a 3CNF formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work for other kinds of boolean formulas.

There are two ways to think about **3SAT**

There are two ways to think about **3SAT**

• Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.

There are two ways to think about **3SAT**

- Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true

There are two ways to think about **3SAT**

- Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and ¬x_i

We will take the second view of **3SAT** to construct the reduction.

() G_{φ} will have one vertex for each literal in a clause

47 / 49

Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$ Miller, Hassanieh (UUC)CS37447Spring 2020

G_φ will have one vertex for each literal in a clause
Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

47 / 49

Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$ Miller, Hassanieh (UUC) CS374 47 Spring 2020

G_φ will have one vertex for each literal in a clause
Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$ Miller, Hassanieh (UUC) CS374 47

- G_{φ} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict

Spring 2020

47 / 49

Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$ Miller, Hassanieh (UIUC) CS374 47

- G_{φ} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- Take k to be the number of clauses

Figure: Graph for

 $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

Correctness

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

 \Rightarrow Let **a** be the truth assignment satisfying φ

Correctness

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \Rightarrow Let *a* be the truth assignment satisfying φ
 - Pick one of the vertices, corresponding to true literals under *a*, from each triangle. This is an independent set of the appropriate size. Why?

Correctness (contd)

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- $\leftarrow \text{ Let } \mathbf{S} \text{ be an independent set of size } \mathbf{k}$
 - **S** must contain *exactly* one vertex from each clause
 - **§** S cannot contain vertices labeled by conflicting literals
 - Thus, it is possible to obtain a truth assignment that makes in the literals in *S* true; such an assignment satisfies one literal in every clause