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Part I

Review: Polynomial reductions
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Polynomial-time Reduction

Definition
X ≤P Y : polynomial time reduction from a decision problem X
to a decision problem Y is an algorithm A such that:

1 Given an instance IX of X , A produces an instance IY of Y .

2 A runs in time polynomial in |IX |. (|IY | = size of IY ).

3 Answer to IX YES ⇐⇒ answer to IY is YES.
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to a decision problem Y is an algorithm A such that:

1 Given an instance IX of X , A produces an instance IY of Y .

2 A runs in time polynomial in |IX |. (|IY | = size of IY ).

3 Answer to IX YES ⇐⇒ answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X .

This is a Karp reduction.
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What do we know so far

1 Independent Set ≤P Clique
Clique ≤P Independent Set.

=⇒ Clique uP Independent Set.

2 Vertex Cover ≤P Independent Set
Independent Set ≤P Vertex Cover.
=⇒ Independent Set uP Vertex Cover.

3 3SAT ≤P SAT
SAT ≤P 3SAT.
=⇒ 3SAT uP SAT.

4 Clique uP Independent Set uP Vertex Cover
3SAT. uP SAT.
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Part II

NP
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P and NP and Turing Machines

1 P: set of decision problems that have polynomial time
algorithms.

2 NP: set of decision problems that have polynomial time
non-deterministic algorithms.

Many natural problems we would like to solve are in NP.

Every problem in NP has an exponential time algorithm

P ⊆ NP
Some problems in NP are in P (example, shortest path problem)

Big Question: Does every problem in NP have an efficient
algorithm? Same as asking whether P = NP.
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Problems with no known polynomial time

algorithms

Problems
1 Independent Set

2 Vertex Cover

3 Set Cover

4 SAT

5 3SAT

There are of course undecidable problems (no algorithm at all!) but
many problems that we want to solve are of similar flavor to the
above.

Question: What is common to above problems?
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Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance IX of X there is a proof/certificate/solution
that is of length poly(|IX |) such that given a proof one can efficiently
check that IX is indeed a YES instance.

Examples:

1 SAT formula ϕ: proof is a satisfying assignment.

2 Independent Set in graph G and k : a subset S of vertices.

3 Homework
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Sudoku

Given n × n sudoku puzzle, does it have a solution?
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Solution to the Sudoku example...

1 8 7 2 5 6 9 3 4
9 3 6 7 4 1 8 5 2
5 4 2 8 9 3 1 6 7

2 9 1 3 7 4 6 8 5
7 6 3 5 2 8 4 1 9
8 5 4 6 1 9 7 2 3

4 1 5 9 6 2 3 7 8
3 7 9 1 8 5 2 4 6
6 2 8 4 3 7 5 9 1
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Certifiers

Definition
An algorithm C(·, ·) is a certifier for problem X if the following two
conditions hold:

For every s ∈ X there is some string t such that
C(s, t) = ”yes”

If s 6∈ X , C(s, t) = ”no” for every t.

The string t is called a certificate or proof for s.
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Efficient (polynomial time) Certifiers

Definition (Efficient Certifier.)

A certifier C is an efficient certifier for problem X if there is a
polynomial p(·) such that the following conditions hold:

For every s ∈ X there is some string t such that
C(s, t) = ”yes” and |t| ≤ p(|s|).

If s 6∈ X , C(s, t) = ”no” for every t.

C(·, ·) runs in polynomial time.
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Example: Independent Set

1 Problem: Does G = (V ,E) have an independent set of size
≥ k?

1 Certificate: Set S ⊆ V .
2 Certifier: Check |S| ≥ k and no pair of vertices in S is

connected by an edge.
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Example: Vertex Cover

1 Problem: Does G have a vertex cover of size ≤ k?
1 Certificate: S ⊆ V .
2 Certifier: Check |S| ≤ k and that for every edge at least one

endpoint is in S .
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Example: SAT

1 Problem: Does formula ϕ have a satisfying truth assignment?
1 Certificate: Assignment a of 0/1 values to each variable.
2 Certifier: Check each clause under a and say “yes” if all clauses

are true.
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Example: Composites

Problem: Composite

Instance: A number s.
Question: Is the number s a composite?

1 Problem: Composite.
1 Certificate: A factor t ≤ s such that t 6= 1 and t 6= s.
2 Certifier: Check that t divides s.
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Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA M .
Question: Is L(M) = Σ∗, that is, does M accept all
strings?

1 Problem: NFA Universality.
1 Certificate: A DFA M ′ equivalent to M
2 Certifier: Check that L(M ′) = Σ∗

Certifier is efficient but certificate is not necessarily short! We do not
know if the problem is in NP.
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Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings α1, . . . , αn and
β1, . . . , βn
Question: Are there indices i1, i2, . . . , ik such that
αi1αi2 . . . αik = βi1βi2 . . . βik
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Post Correspondence Problem

Given: Dominoes, each with a top-word and a bottom-word.

b

bbb

ba

bbb

abb

a

abb

baa

a

ab

Can one arrange them, using any number of copies of each type, so
that the top and bottom strings are equal?

abb
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Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings α1, . . . , αn and
β1, . . . , βn
Question: Are there indices i1, i2, . . . , ik such that
αi1αi2 . . . αik = βi1βi2 . . . βik

1 Problem: PCP
1 Certificate: A sequence of indices i1, i2, . . . , ik
2 Certifier: Check that αi1αi2 . . . αik = βi1βi2 . . . βik

PCP = Posts Correspondence Problem and it is undecidable!
Implies no finite bound on length of certificate!
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Nondeterministic Polynomial Time

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.
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Nondeterministic Polynomial Time

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

Example
Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and
Composite are all examples of problems in NP.
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Why is it called...
Nondeterministic Polynomial Time

A certifier is an algorithm C(I , c) with two inputs:

1 I : instance.

2 c : proof/certificate that the instance is indeed a YES instance
of the given problem.

One can think about C as an algorithm for the original problem, if:

1 Given I , the algorithm guesses (non-deterministically, and who
knows how) a certificate c .

2 The algorithm now verifies the certificate c for the instance I .

NP can be equivalently described using Turing machines.
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Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO
instances need not have a short certificate.

Example
SAT formula ϕ. No easy way to prove that ϕ is NOT satisfiable!

More on this and co-NP later on.
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P versus NP

Proposition
P ⊆ NP.

For a problem in P no need for a certificate!

Proof.
Consider problem X ∈ P with algorithm A. Need to demonstrate
that X has an efficient certifier:

1 Certifier C on input s, t, runs A(s) and returns the answer.

2 C runs in polynomial time.

3 If s ∈ X , then for every t, C(s, t) = ”yes”.

4 If s 6∈ X , then for every t, C(s, t) = ”no”.
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Exponential Time

Definition
Exponential Time (denoted EXP) is the collection of all problems
that have an algorithm which on input s runs in exponential time,
i.e., O(2poly(|s|)).

Example: O(2n), O(2n log n), O(2n3
), ...
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NP versus EXP

Proposition
NP ⊆ EXP.

Proof.
Let X ∈ NP with certifier C . Need to design an exponential time
algorithm for X .

1 For every t, with |t| ≤ p(|s|) run C(s, t); answer “yes” if any
one of these calls returns “yes”.

2 The above algorithm correctly solves X (exercise).

3 Algorithm runs in O(q(|s|+ |p(s)|)2p(|s|)), where q is the
running time of C .
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Examples

1 SAT: try all possible truth assignment to variables.

2 Independent Set: try all possible subsets of vertices.

3 Vertex Cover: try all possible subsets of vertices.
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Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.
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Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.

Big Question

Is there are problem in NP that does not belong to P? Is P = NP?
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If P = NP . . .
Or: If pigs could fly then life would be sweet.

1 Many important optimization problems can be solved efficiently.

2 The RSA cryptosystem can be broken.

3 No security on the web.

4 No e-commerce . . .

5 Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).
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If P = NP this implies that...

(A) Vertex Cover can be solved in polynomial time.

(B) P = EXP.

(C) EXP ⊆ P.

(D) All of the above.
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P versus NP

Status
Relationship between P and NP remains one of the most important
open problems in mathematics/computer science.

Consensus: Most people feel/believe P 6= NP.

Resolving P versus NP is a Clay Millennium Prize Problem. You can
win a million dollars in addition to a Turing award and major fame!
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Part III

NP-Completeness
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“Hardest” Problems

Question
What is the hardest problem in NP? How do we define it?

Towards a definition
1 Hardest problem must be in NP.

2 Hardest problem must be at least as “difficult” as every other
problem in NP.
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NP-Complete Problems

Definition
A problem X is said to be NP-Complete if

1 X ∈ NP, and

2 (Hardness) For any Y ∈ NP, Y ≤P X.
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Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.
⇒ Suppose X can be solved in polynomial time

1 Let Y ∈ NP. We know Y ≤P X.
2 We showed that if Y ≤P X and X can be solved in polynomial

time, then Y can be solved in polynomial time.
3 Thus, every problem Y ∈ NP is such that Y ∈ P; NP ⊆ P.
4 Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time
algorithm for X .
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NP-Hard Problems

Definition
A problem X is said to be NP-Hard if

1 (Hardness) For any Y ∈ NP, we have that Y ≤P X.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not
NP-Complete.
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Consequences of proving NP-Completeness

If X is NP-Complete

1 Since we believe P 6= NP,

2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X .
(This is proof by mob opinion — take with a grain of salt.)
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NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.
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Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

Need to show

1 SAT is in NP.

2 every NP problem X reduces to SAT.

Will see proof in next lecture.

Steve Cook won the Turing award for his theorem.
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Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

1 Show that X is in NP.

2 Give a polynomial-time reduction from a known NP-Complete
problem such as SAT to X

SAT ≤P X implies that every NP problem Y ≤P X . Why?
Transitivity of reductions:

Y ≤P SAT and SAT ≤P X and hence Y ≤P X .
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3-SAT is NP-Complete

3-SAT is in NP
SAT ≤P 3-SAT as we saw
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NP-Completeness via Reductions

1 SAT is NP-Complete due to Cook-Levin theorem

2 SAT ≤P 3-SAT

3 3-SAT ≤P Independent Set

4 Independent Set ≤P Vertex Cover

5 Independent Set ≤P Clique

6 3-SAT ≤P 3-Color

7 3-SAT ≤P Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of
science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!
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Part IV

Reducing 3-SAT to Independent
Set
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Independent Set

Problem: Independent Set

Instance: A graph G, integer k .
Question: Is there an independent set in G of size k?
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3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.

Gϕ should be constructable in time polynomial in size of ϕ

Importance of reduction: Although 3SAT is much more expressive, it
can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work
for other kinds of boolean formulas.
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Gϕ should be constructable in time polynomial in size of ϕ

Importance of reduction: Although 3SAT is much more expressive, it
can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas – reduction would not work
for other kinds of boolean formulas.
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Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true

. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.
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The Reduction

1 Gϕ will have one vertex for each literal in a clause

2 Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)
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The Reduction

1 Gϕ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the
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Correctness

Proposition

ϕ is satisfiable iff Gϕ has an independent set of size k (= number of
clauses in ϕ).

Proof.
⇒ Let a be the truth assignment satisfying ϕ

1 Pick one of the vertices, corresponding to true literals under a,
from each triangle. This is an independent set of the
appropriate size. Why?
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Correctness (contd)

Proposition

ϕ is satisfiable iff Gϕ has an independent set of size k (= number of
clauses in ϕ).

Proof.
⇐ Let S be an independent set of size k

1 S must contain exactly one vertex from each clause
2 S cannot contain vertices labeled by conflicting literals
3 Thus, it is possible to obtain a truth assignment that makes in

the literals in S true; such an assignment satisfies one literal in
every clause
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