Algorithms \& Models of Computation

 CS/ECE 374 B, Spring 2020
Proving Non-regularity

Lecture 6
Friday, February 7, 2020

Regular Languages, DFAs, NFAs

Theorem
Languages accepted by DFAs, NFAs, and regular expressions are the same.

Regular Languages, DFAs, NFAs

Abstract

Theorem Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language?

Regular Languages, DFAs, NFAs

Abstract

Theorem Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet $\boldsymbol{\Sigma}$ by appropriate encoding

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet $\boldsymbol{\Sigma}$ by appropriate encoding
- Hence number of regular languages is countably infinite

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet $\boldsymbol{\Sigma}$ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet $\boldsymbol{\Sigma}$ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

How to prove non-regularity?

Claim: Language L is not regular.

How to prove non-regularity?

Claim: Language L is not regular. Idea: Show \# states in any DFA M for language L has infinite number of states.

How to prove non-regularity?

Claim: Language L is not regular. Idea: Show \# states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \boldsymbol{\Sigma}^{*}$.
$M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$: DFA for language $L \subseteq \boldsymbol{\Sigma}^{*}$.
If $\delta^{*}(s, x w) \in A$ and $\delta^{*}(s, y w) \notin A$ then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

How to prove non-regularity?

Claim: Language L is not regular. Idea: Show \# states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \boldsymbol{\Sigma}^{*}$.
$M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$: DFA for language $L \subseteq \boldsymbol{\Sigma}^{*}$.
If $\delta^{*}(s, x w) \in A$ and $\delta^{*}(s, y w) \notin A$ then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

Proof.

Assume for the sake of contradiction that $\delta^{*}(s, x)=\delta^{*}(s, y)$.

How to prove non-regularity?

Claim: Language L is not regular. Idea: Show \# states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \boldsymbol{\Sigma}^{*}$.
$M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$: DFA for language $L \subseteq \boldsymbol{\Sigma}^{*}$.
If $\delta^{*}(s, x w) \in A$ and $\delta^{*}(s, y w) \notin A$ then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

Proof.

Assume for the sake of contradiction that $\delta^{*}(s, x)=\delta^{*}(s, y)$. $\Longrightarrow A \ni \delta^{*}(s, x w)=\delta^{*}\left(\delta^{*}(s, x), w\right)$

How to prove non-regularity?

Claim: Language L is not regular. Idea: Show \# states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$.
$M=(Q, \boldsymbol{\Sigma}, \delta, s, A):$ DFA for language $L \subseteq \boldsymbol{\Sigma}^{*}$.
If $\delta^{*}(s, x w) \in A$ and $\delta^{*}(s, y w) \notin A$ then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

Proof.

Assume for the sake of contradiction that $\delta^{*}(s, x)=\delta^{*}(s, y)$. $\Longrightarrow A \ni \delta^{*}(s, x w)=\delta^{*}\left(\delta^{*}(s, x), w\right)=\delta^{*}\left(\delta^{*}(s, y), w\right)$

How to prove non-regularity?

Claim: Language L is not regular. Idea: Show \# states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \boldsymbol{\Sigma}^{*}$.
$M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$: DFA for language $L \subseteq \boldsymbol{\Sigma}^{*}$.
If $\delta^{*}(s, x w) \in A$ and $\delta^{*}(s, y w) \notin A$ then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

Proof.

Assume for the sake of contradiction that $\delta^{*}(s, x)=\delta^{*}(s, y)$. $\Longrightarrow A \ni \delta^{*}(s, x w)=\delta^{*}\left(\delta^{*}(s, x), w\right)=\delta^{*}\left(\delta^{*}(s, y), w\right)$ $=\delta^{*}(s, y w) \notin A$

How to prove non-regularity?

Claim: Language L is not regular. Idea: Show \# states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \boldsymbol{\Sigma}^{*}$.
$M=(Q, \boldsymbol{\Sigma}, \delta, s, A):$ DFA for language $L \subseteq \boldsymbol{\Sigma}^{*}$.
If $\delta^{*}(s, x w) \in A$ and $\delta^{*}(s, y w) \notin A$ then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

Proof.

Assume for the sake of contradiction that $\delta^{*}(s, x)=\delta^{*}(s, y)$. $\Longrightarrow A \ni \delta^{*}(s, x w)=\delta^{*}\left(\delta^{*}(s, x), w\right)=\delta^{*}\left(\delta^{*}(s, y), w\right)$
$=\delta^{*}(s, y w) \notin A$
$\Longrightarrow A \ni \delta^{*}(s, x w) \notin A$. Impossible!

Proof by figures

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{k} 1^{k} \mid i \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{k} 1^{k} \mid i \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem
 L is not regular.

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{k} 1^{k} \mid i \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem
 L is not regular.

Question: Proof?

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{k} 1^{k} \mid i \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem
 L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{k} 1^{k} \mid i \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem
 L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{\mathbf{0}, \mathbf{1}\}, \delta, s, A)$ where $|Q|=n$.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{\mathbf{0}, \mathbf{1}\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\boldsymbol{\epsilon}, \mathbf{0}, \mathbf{0 0}, \mathbf{0 0 0}, \cdots, \mathbf{0}^{\boldsymbol{n}}$ total of $\boldsymbol{n}+\mathbf{1}$ strings.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{\mathbf{0}, \mathbf{1}\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\boldsymbol{\epsilon}, \mathbf{0}, \mathbf{0 0}, \mathbf{0 0 0}, \cdots, \mathbf{0}^{\boldsymbol{n}}$ total of $\boldsymbol{n}+\mathbf{1}$ strings.
What states does M reach on the above strings? Let $q_{i}=\delta^{*}\left(s, 0^{i}\right)$.
By pigeon hole principle $\boldsymbol{q}_{\boldsymbol{i}}=\boldsymbol{q}_{\boldsymbol{j}}$ for some $\mathbf{0} \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{n}$.
That is, M is in the same state after reading $\boldsymbol{0}^{\boldsymbol{i}}$ and $\boldsymbol{0}^{\boldsymbol{j}}$ where $\boldsymbol{i} \neq \boldsymbol{j}$.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{\mathbf{0}, \mathbf{1}\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\boldsymbol{\epsilon}, \mathbf{0}, \mathbf{0 0}, \mathbf{0 0 0}, \cdots, \mathbf{0}^{\boldsymbol{n}}$ total of $\boldsymbol{n}+\mathbf{1}$ strings.
What states does M reach on the above strings? Let $q_{i}=\delta^{*}\left(s, 0^{i}\right)$.
By pigeon hole principle $\boldsymbol{q}_{\boldsymbol{i}}=\boldsymbol{q}_{\boldsymbol{j}}$ for some $\mathbf{0} \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{n}$.
That is, M is in the same state after reading $\boldsymbol{0}^{\boldsymbol{i}}$ and $\boldsymbol{0}^{\boldsymbol{j}}$ where $\boldsymbol{i} \neq \boldsymbol{j}$.
M should accept $\mathbf{0}^{\boldsymbol{i}} \mathbf{1}^{\boldsymbol{i}}$ but then it will also accept $\mathbf{0}^{\boldsymbol{j}} \mathbf{1}^{\boldsymbol{i}}$ where $\boldsymbol{i} \neq \boldsymbol{j}$.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\epsilon, \mathbf{0}, \mathbf{0 0}, \mathbf{0 0 0}, \cdots, \mathbf{0}^{\boldsymbol{n}}$ total of $\boldsymbol{n}+\mathbf{1}$ strings.
What states does M reach on the above strings? Let $q_{i}=\delta^{*}\left(s, 0^{i}\right)$.
By pigeon hole principle $\boldsymbol{q}_{\boldsymbol{i}}=\boldsymbol{q}_{\boldsymbol{j}}$ for some $\mathbf{0} \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{n}$. That is, M is in the same state after reading $\boldsymbol{0}^{\boldsymbol{i}}$ and $\boldsymbol{0}^{\boldsymbol{j}}$ where $\boldsymbol{i} \neq \boldsymbol{j}$.
M should accept $\mathbf{0}^{\boldsymbol{i}} \mathbf{1}^{\boldsymbol{i}}$ but then it will also accept $\boldsymbol{0}^{\boldsymbol{j}} \mathbf{1}^{\boldsymbol{i}}$ where $\boldsymbol{i} \neq \boldsymbol{j}$. This contradicts the fact that M accepts L. Thus, there is no DFA for L.

Generalizing the argument

Definition

For a language \boldsymbol{L} over $\boldsymbol{\Sigma}$ and two strings $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{\Sigma}^{*}, \boldsymbol{x}$ and \boldsymbol{y} are distinguishable with respect to \boldsymbol{L} if there is a string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ such that exactly one of $x w, y w$ is in L.

Generalizing the argument

Definition

For a language \boldsymbol{L} over $\boldsymbol{\Sigma}$ and two strings $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{\Sigma}^{*}, \boldsymbol{x}$ and \boldsymbol{y} are distinguishable with respect to L if there is a string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ such that exactly one of $x w, y w$ is in L. $\boldsymbol{x}, \boldsymbol{y}$ are indistinguishable with respect to L if there is no such \boldsymbol{w}.

Generalizing the argument

Definition

For a language \boldsymbol{L} over $\boldsymbol{\Sigma}$ and two strings $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{\Sigma}^{*}, \boldsymbol{x}$ and \boldsymbol{y} are distinguishable with respect to \boldsymbol{L} if there is a string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ such that exactly one of $x w, y w$ is in L.
$\boldsymbol{x}, \boldsymbol{y}$ are indistinguishable with respect to L if there is no such \boldsymbol{w}.
Example: If $\boldsymbol{i} \neq \boldsymbol{j}, \mathbf{0}^{\boldsymbol{i}}$ and $\mathbf{0}^{\boldsymbol{j}}$ are distinguishable with respect to $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$

Generalizing the argument

Definition

For a language \boldsymbol{L} over $\boldsymbol{\Sigma}$ and two strings $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{\Sigma}^{*}, \boldsymbol{x}$ and \boldsymbol{y} are distinguishable with respect to L if there is a string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ such that exactly one of $x w, y w$ is in L.
$\boldsymbol{x}, \boldsymbol{y}$ are indistinguishable with respect to L if there is no such \boldsymbol{w}.
Example: If $\boldsymbol{i} \neq \boldsymbol{j}, \mathbf{0}^{\boldsymbol{i}}$ and $\mathbf{0}^{\boldsymbol{j}}$ are distinguishable with respect to $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$

Example: 000 and 0000 are indistinguishable with respect to the language $L=\{\boldsymbol{w} \mid \boldsymbol{w}$ has 00 as a substring $\}$

Wee Lemma

Lemma

Suppose $L=L(M)$ for some DFA $M=(Q, \Sigma, \delta, s, A)$ and suppose x, y are distinguishable with respect to L. Then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

Wee Lemma

Lemma

Suppose $L=L(M)$ for some DFA $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ and suppose x, y are distinguishable with respect to L. Then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

Proof.

Since x, y are distinguishable let w be the distinguishing suffix. If $\delta^{*}(s, x)=\delta^{*}(s, y)$ then M will either accept both the strings $x w, y w$, or reject both. But exactly one of them is in L, a contradiction.

Fooling Sets

Definition

For a language L over $\boldsymbol{\Sigma}$ a set of strings \boldsymbol{F} (could be infinite) is a fooling set or distinguishing set for \boldsymbol{L} if every two distinct strings $x, y \in F$ are distinguishable.

Fooling Sets

Definition

For a language L over $\boldsymbol{\Sigma}$ a set of strings \boldsymbol{F} (could be infinite) is a fooling set or distinguishing set for \boldsymbol{L} if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F=\left\{0^{i} \mid i \geq 0\right\}$ is a fooling set for the language $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.

Fooling Sets

Definition

For a language L over $\boldsymbol{\Sigma}$ a set of strings \boldsymbol{F} (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F=\left\{\mathbf{0}^{\boldsymbol{i}} \mid \boldsymbol{i} \geq \mathbf{0}\right\}$ is a fooling set for the language $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.

Theorem
 Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.

Proof of Theorem

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.

Proof.

Suppose there is a DFA $M=(Q, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \boldsymbol{s}, \boldsymbol{A})$ that accepts L. Let $|Q|=n$.

Proof of Theorem

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.

Proof.

Suppose there is a DFA $M=(Q, \boldsymbol{\Sigma}, \boldsymbol{\delta}, s, A)$ that accepts L. Let $|Q|=n$.
If $n<|F|$ then by pigeon hole principle there are two strings $x, y \in F, x \neq y$ such that $\delta^{*}(s, x)=\delta^{*}(s, y)$ but x, y are distinguishable.

Proof of Theorem

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.

Proof.

Suppose there is a DFA $M=(Q, \boldsymbol{\Sigma}, \boldsymbol{\delta}, s, A)$ that accepts L. Let $|Q|=n$.
If $n<|F|$ then by pigeon hole principle there are two strings $x, y \in F, x \neq y$ such that $\delta^{*}(s, x)=\delta^{*}(s, y)$ but x, y are distinguishable.
Implies that there is w such that exactly one of $x w, y w$ is in L. However, M 's behavior on $x w$ and $y w$ is exactly the same and hence M will accept both $x w, y w$ or reject both. A contradiction.

Infinite Fooling Sets

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.

Corollary

If L has an infinite fooling set F then L is not regular.

Infinite Fooling Sets

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than $|F|$ states.

Corollary

If \mathbf{L} has an infinite fooling set \boldsymbol{F} then \mathbf{L} is not regular.

Proof.

Suppose for contradiction that $L=L(M)$ for some DFA M with n states.
Any subset F^{\prime} of F is a fooling set. (Why?) Pick $F^{\prime} \subseteq F$ arbitrarily such that $\left|\boldsymbol{F}^{\prime}\right|>\boldsymbol{n}$. By preceding theorem, we obtain a contradiction.

Examples

- $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$

Examples

- $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
- \{bitstrings with equal number of 0 s and 1 s$\}$

Examples

- $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
- \{bitstrings with equal number of 0 s and 1 s$\}$
- $\left\{0^{k} 1^{\ell} \mid k \neq \ell\right\}$

Examples

- $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
- \{bitstrings with equal number of 0 s and 1 s$\}$
- $\left\{0^{k} 1^{\ell} \mid k \neq \ell\right\}$
- $\left\{0^{k^{2}} \mid k \geq 0\right\}$

Examples

- $\left\{w w^{R} \mid w \in \boldsymbol{\Sigma}^{*}\right\}$

Examples

- $\left\{w w^{R} \mid w \in \mathbf{\Sigma}^{*}\right\}$
- $\left\{w w w \mid w \in \boldsymbol{\Sigma}^{*}\right\}$

Exponential gap between NFA and DFA size

$$
L_{k}=\left\{w \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid w \text { has a } \mathbf{1} k \text { positions from the end }\right\}
$$

Exponential gap between NFA and DFA size

$L_{k}=\left\{w \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid w\right.$ has a $\mathbf{1} k$ positions from the end $\}$ Recall that L_{k} is accepted by a NFA N with $k+1$ states.

Exponential gap between NFA and DFA size

$L_{k}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a $\mathbf{1} k$ positions from the end $\}$
Recall that L_{k} is accepted by a NFA N with $k+1$ states.

Theorem

Every DFA that accepts L_{k} has at least $\mathbf{2}^{k}$ states.

Exponential gap between NFA and DFA size

$L_{k}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a $\mathbf{1} k$ positions from the end $\}$ Recall that L_{k} is accepted by a NFA N with $k+1$ states.

Theorem

Every DFA that accepts L_{k} has at least $\mathbf{2}^{\boldsymbol{k}}$ states.

Claim
 $F=\left\{w \in\{0,1\}^{*}:|w|=k\right\}$ is a fooling set of size 2^{k} for L_{k}.

Why?

Exponential gap between NFA and DFA size

$L_{k}=\left\{w \in\{\mathbf{0}, \mathbf{1}\}^{*} \mid w\right.$ has a $\mathbf{1} k$ positions from the end $\}$
Recall that L_{k} is accepted by a NFA N with $k+1$ states.

Theorem

Every DFA that accepts L_{k} has at least $\mathbf{2}^{k}$ states.

Claim

$F=\left\{w \in\{0,1\}^{*}:|w|=k\right\}$ is a fooling set of size 2^{k} for L_{k}.
Why?

- Suppose $a_{1} a_{2} \ldots a_{k}$ and $b_{1} b_{2} \ldots b_{k}$ are two distinct bitstrings of length k
- Let \boldsymbol{i} be first index where $a_{i} \neq \boldsymbol{b}_{\boldsymbol{i}}$
- $y=0^{k-i-1}$ is a distinguishing suffix for the two strings

How do pick a fooling set

How do we pick a fooling set \boldsymbol{F} ?

- If x, y are in F and $x \neq y$ they should be distinguishable! Of course.
- All strings in F except maybe one should be prefixes of strings in the language L.
For example if $L=\left\{\mathbf{0}^{k} \mathbf{1}^{k} \mid k \geq \mathbf{0}\right\}$ do not pick $\mathbf{1}$ and $\mathbf{1 0}$ (say). Why?

Part I

Non-regularity via closure properties

Non-regularity via closure properties

$L=\{$ bitstrings with equal number of 0 s and 1 s$\}$
$L^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Suppose we have already shown that L^{\prime} is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

Non-regularity via closure properties

$L=\{$ bitstrings with equal number of $0 s$ and $1 s\}$
$L^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Suppose we have already shown that L^{\prime} is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

$$
L^{\prime}=L \cap L\left(\mathbf{0}^{*} \mathbf{1}^{*}\right)
$$

Claim: The above and the fact that L^{\prime} is non-regular implies L is non-regular. Why?

Non-regularity via closure properties

$L=\{$ bitstrings with equal number of $0 s$ and $1 s\}$
$L^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Suppose we have already shown that L^{\prime} is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

$$
L^{\prime}=L \cap L\left(0^{*} 1^{*}\right)
$$

Claim: The above and the fact that L^{\prime} is non-regular implies L is non-regular. Why?

Suppose L is regular. Then since $L\left(\mathbf{0}^{*} \mathbf{1}^{*}\right)$ is regular, and regular languages are closed under intersection, L^{\prime} also would be regular. But we know L^{\prime} is not regular, a contradiction.

Non-regularity via closure properties

General recipe:

Proving non-regularity: Summary

- Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Pumping lemma. We did not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.

Part II

Myhill-Nerode Theorem

Indistinguishability

Recall:

Definition

For a language L over $\boldsymbol{\Sigma}$ and two strings $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{\Sigma}^{*}$ we say that \boldsymbol{x} and \boldsymbol{y} are distinguishable with respect to L if there is a string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ such that exactly one of $x w, y w$ is in $L . x, y$ are indistinguishable with respect to L if there is no such \boldsymbol{w}.

Given language \boldsymbol{L} over $\boldsymbol{\Sigma}$ define a relation $\equiv \boldsymbol{L}$ over strings in $\boldsymbol{\Sigma}^{*}$ as follows: $\boldsymbol{x} \equiv \boldsymbol{L} \boldsymbol{y}$ iff \boldsymbol{x} and \boldsymbol{y} are indistinguishable with respect to \boldsymbol{L}.

Indistinguishability

Recall:

Definition

For a language L over $\boldsymbol{\Sigma}$ and two strings $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{\Sigma}^{*}$ we say that \boldsymbol{x} and \boldsymbol{y} are distinguishable with respect to L if there is a string $w \in \boldsymbol{\Sigma}^{*}$ such that exactly one of $x w, y w$ is in $L . x, y$ are indistinguishable with respect to L if there is no such w.

Given language L over $\boldsymbol{\Sigma}$ define a relation $\equiv \boldsymbol{L}$ over strings in $\boldsymbol{\Sigma}^{*}$ as follows: $x \equiv\llcorner y$ iff x and y are indistinguishable with respect to L.

Claim

\equiv_{L} is an equivalence relation over $\boldsymbol{\Sigma}^{*}$.
Therefore, $\equiv\left\llcorner\right.$ partitions $\boldsymbol{\Sigma}^{*}$ into a collection of equivalence classes X_{1}, X_{2}, \ldots,

Claim

\equiv_{L} is an equivalence relation over $\boldsymbol{\Sigma}^{*}$.
Therefore, $\equiv\left\llcorner\right.$ partitions $\boldsymbol{\Sigma}^{*}$ into a collection of equivalence classes.

Claim

Let x, y be two distinct strings. If x, y belong to the same equivalence class of $\equiv_{\llcorner }$then x, y are indistinguishable. Otherwise they are distinguishable.

Corollary

If $\equiv_{\llcorner }$is finite with \boldsymbol{n} equivalence classes then there is a fooling set F of size \boldsymbol{n} for \boldsymbol{L}. If \equiv_{L} is infinite then there is an infinite fooling set for L.

Myhill-Nerode Theorem

Theorem (Myhill-Nerode)

L is regular $\Longleftrightarrow \equiv_{L}$ has a finite number of equivalence classes. If \equiv_{L} is finite with n equivalence classes then there is a DFA M accepting L with exactly n states and this is the minimum possible.

Corollary

A language L is non-regular if and only if there is an infinite fooling set F for L.

Algorithmic implication: For every DFA M one can find in polynomial time a DFA M^{\prime} such that $L(M)=L\left(M^{\prime}\right)$ and M^{\prime} has the fewest possible states among all such DFAs.

