Algorithms & Models of Computation

CS/ECE 374 B, Spring 2020

NFAs continued, Closure Properties of Regular Languages

Lecture 5 Wednesday, February 5, 2020

LATEXed: January 19, 2020 04:14

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

- DFAs are special cases of NFAs (trivial)
- NFAs accept regular expressions (we saw already)
- ullet DFAs accept languages accepted by NFAs (today)
- Regular expressions for languages accepted by DFAs (later in the course)

Part 1

Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Theorem

For every NFA N there is a DFA M such that L(M) = L(N).

Formal Tuple Notation for NFA

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\epsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

 $\delta(q, a)$ for $a \in \Sigma \cup \{\epsilon\}$ is a subset of Q — a set of states.

Extending the transition function to strings

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ -reach(q) is the set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

- if $w = \epsilon$, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$
- if w = a where $a \in \Sigma$ $\delta^*(q, a) = \bigcup_{p \in \epsilon \operatorname{reach}(q)} (\bigcup_{r \in \delta(p, a)} \epsilon \operatorname{reach}(r))$
- if w = xa, $\delta^*(q, w) = \bigcup_{p \in \delta^*(q, x)} (\bigcup_{r \in \delta(p, a)} \epsilon \operatorname{reach}(r))$

Formal definition of language accepted by N

Definition

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition

The language L(N) accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{w \in \mathbf{\Sigma}^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$

- Think of a program with fixed memory that needs to simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?

8

- Think of a program with fixed memory that needs to simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?
- It needs to know at least $\delta^*(s, x)$, the set of states that N could be in after reading x
- Is it sufficient?

8

- Think of a program with fixed memory that needs to simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?
- It needs to know at least $\delta^*(s, x)$, the set of states that N could be in after reading x
- Is it sufficient? Yes, if it can compute $\delta^*(s, xa)$ after seeing another symbol a in the input.
- When should the program accept a string w?

- Think of a program with fixed memory that needs to simulate NFA N on input w.
- What does it need to store after seeing a prefix x of w?
- It needs to know at least $\delta^*(s, x)$, the set of states that N could be in after reading x
- Is it sufficient? Yes, if it can compute $\delta^*(s, xa)$ after seeing another symbol a in the input.
- When should the program accept a string w? If $\delta^*(s, w) \cap A \neq \emptyset$.

Key Observation: A DFA M that simulates N should keep in its memory/state the set of states of N

Thus the state space of the DFA should be $\mathcal{P}(Q)$.

8

NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $M = (Q', \Sigma, \delta', s', A')$ as follows: • $Q' = \mathcal{P}(Q)$

NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $M = (Q', \Sigma, \delta', s', A')$ as follows:

- $Q' = \mathcal{P}(Q)$
- $s' = \epsilon \operatorname{reach}(s) = \delta^*(s, \epsilon)$

9

NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $M = (Q', \Sigma, \delta', s', A')$ as follows:

- $Q' = \mathcal{P}(Q)$
- $s' = \epsilon \operatorname{reach}(s) = \delta^*(s, \epsilon)$
- $\bullet \ A' = \{X \subseteq Q \mid X \cap A \neq \emptyset\}$

9

NFA $N = (Q, \Sigma, s, \delta, A)$. We create a DFA $M = (Q', \Sigma, \delta', s', A')$ as follows:

- $Q' = \mathcal{P}(Q)$
- $s' = \epsilon \operatorname{reach}(s) = \delta^*(s, \epsilon)$
- $\bullet \ A' = \{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ for each $X \subseteq Q$, $a \in \Sigma$.

Example

No ϵ -transitions

Example

No ϵ -transitions

Simulating NFA

Example the first revisited

Example: DFA from NFA

Spring 2020

Incremental construction

Only build states reachable from $s' = \epsilon \operatorname{reach}(s)$ the start state of M

Incremental construction

Only build states reachable from $s' = \epsilon \operatorname{reach}(s)$ the start state of M

$$\delta'(X,a) = \cup_{q \in X} \delta^*(q,a)$$

Incremental algorithm

- Build M beginning with start state $s' == \epsilon \operatorname{reach}(s)$
- For each existing state $X \subseteq Q$ consider each $a \in \Sigma$ and calculate the state $Y = \delta'(X, a) = \bigcup_{q \in X} \delta^*(q, a)$ and add a transition.
- If Y is a new state add it to reachable states that need to explored.

To compute $\delta^*(q,a)$ - set of all states reached from q on $string\ a$

- Compute $X = \epsilon \operatorname{reach}(q)$
- Compute $Y = \bigcup_{p \in X} \delta(p, a)$
- Compute $Z = \epsilon \operatorname{reach}(Y) = \bigcup_{r \in Y} \epsilon \operatorname{reach}(r)$

Proof of Correctness

Theorem

Let $N = (Q, \Sigma, s, \delta, A)$ be a NFA and let $M = (Q', \Sigma, \delta', s', A')$ be a DFA constructed from N via the subset construction. Then L(N) = L(M).

Proof of Correctness

Theorem

Let $N = (Q, \Sigma, s, \delta, A)$ be a NFA and let $M = (Q', \Sigma, \delta', s', A')$ be a DFA constructed from N via the subset construction. Then L(N) = L(M).

Stronger claim:

Lemma

For every string w, $\delta_N^*(s, w) = \delta_M^*(s', w)$.

Proof by induction on |w|.

Base case: $w = \epsilon$.

$$\delta_N^*(s,\epsilon) = \epsilon \operatorname{reach}(s).$$

 $\delta_M^*(s', \epsilon) = s' = \epsilon \operatorname{reach}(s)$ by definition of s'.

Lemma

For every string w, $\delta_N^*(s, w) = \delta_M^*(s', w)$.

Inductive step: w = xa (Note: suffix definition of strings) $\delta_N^*(s, xa) = \bigcup_{p \in \delta_N^*(s, x)} \delta_N^*(p, a)$ by inductive definition of δ_N^*

Lemma

For every string w, $\delta_N^*(s, w) = \delta_M^*(s', w)$.

Inductive step: w = xa (Note: suffix definition of strings) $\delta_N^*(s,xa) = \bigcup_{p \in \delta_N^*(s,x)} \delta_N^*(p,a)$ by inductive definition of δ_N^* $\delta_M^*(s',xa) = \delta_M(\delta_M^*(s,x),a)$ by inductive definition of δ_M^*

Lemma

For every string w, $\delta_N^*(s, w) = \delta_M^*(s', w)$.

Inductive step: w = xa (Note: suffix definition of strings) $\delta_N^*(s,xa) = \bigcup_{p \in \delta_N^*(s,x)} \delta_N^*(p,a)$ by inductive definition of δ_N^* $\delta_M^*(s',xa) = \delta_M(\delta_M^*(s,x),a)$ by inductive definition of δ_M^*

By inductive hypothesis: $Y = \delta_N^*(s, x) = \delta_M^*(s, x)$

Lemma

For every string w, $\delta_N^*(s, w) = \delta_M^*(s', w)$.

Inductive step: w = xa (Note: suffix definition of strings) $\delta_N^*(s,xa) = \bigcup_{p \in \delta_N^*(s,x)} \delta_N^*(p,a)$ by inductive definition of δ_N^* $\delta_M^*(s',xa) = \delta_M(\delta_M^*(s,x),a)$ by inductive definition of δ_M^*

By inductive hypothesis: $Y = \delta_N^*(s, x) = \delta_M^*(s, x)$

Thus $\delta_N^*(s,xa) = \bigcup_{p \in Y} \delta_N^*(p,a) = \delta_M(Y,a)$ by definition of δ_M .

Lemma

For every string w, $\delta_N^*(s, w) = \delta_M^*(s', w)$.

Inductive step: w = xa (Note: suffix definition of strings) $\delta_N^*(s,xa) = \bigcup_{p \in \delta_N^*(s,x)} \delta_N^*(p,a)$ by inductive definition of $\delta_N^*(s',xa) = \delta_M(\delta_M^*(s,x),a)$ by inductive definition of δ_M^*

By inductive hypothesis: $Y = \delta_N^*(s, x) = \delta_M^*(s, x)$

Thus $\delta_N^*(s,xa) = \bigcup_{p \in Y} \delta_N^*(p,a) = \delta_M(Y,a)$ by definition of δ_M .

Therefore,

 $\delta_N^*(s, xa) = \delta_M(Y, a) = \delta_M(\delta_M^*(s, x), a) = \delta_M^*(s', xa)$ which is what we need.

Example: DFA from NFA

Part II

Closure Properties of Regular Languages

Regular Languages

Regular languages have three different characterizations

- Inductive definition via base cases and closure under union, concatenation and Kleene star
- Languages accepted by DFAs
- Languages accepted by NFAs

Regular Languages

Regular languages have three different characterizations

- Inductive definition via base cases and closure under union, concatenation and Kleene star
- Languages accepted by DFAs
- Languages accepted by NFAs

Regular language closed under many operations:

- union, concatenation, Kleene star via inductive definition or NFAs
- complement, union, intersection via DFAs
- homomorphism, inverse homomorphism, reverse, ...

Different representations allow for flexibility in proofs

Examples: PREFIX and SUFFIX

Let L be a language over Σ .

Definition

$$PREFIX(L) = \{w \mid wx \in L, x \in \Sigma^*\}$$

Definition

$$\mathsf{SUFFIX}(L) = \{ w \mid xw \in L, x \in \mathbf{\Sigma}^* \}$$

Examples: PREFIX and SUFFIX

Let L be a language over Σ .

Definition

$$PREFIX(L) = \{w \mid wx \in L, x \in \Sigma^*\}$$

Definition

$$\mathsf{SUFFIX}(L) = \{ w \mid xw \in L, x \in \mathbf{\Sigma}^* \}$$

Theorem

If L is regular then PREFIX(L) is regular.

Theorem

If L is regular then SUFFIX(L) is regular.

PREFIX

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

Create new DFA/NFA to accept PREFIX(L) (or SUFFIX(L)).

PREFIX

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

Create new DFA/NFA to accept PREFIX(L) (or SUFFIX(L)).

$$X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$$

 $Y = \{q \in Q \mid q \text{ can reach some state in } A\}$
 $Z = X \cap Y$

Theorem

Consider DFA $M' = (Q, \Sigma, \delta, s, Z)$. L(M') = PREFIX(L).

SUFFIX

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

SUFFIX

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

 $X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$

SUFFIX'

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

 $X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$

Consider NFA $N = (Q \cup \{s'\}, \Sigma, \delta', s', A)$. Add new start state s' and ϵ -transition from s' to each state in X.

SUFFIX

Let $M = (Q, \Sigma, \delta, s, A)$ be a DFA that recognizes L

 $X = \{q \in Q \mid s \text{ can reach } q \text{ in } M\}$

Consider NFA $N = (Q \cup \{s'\}, \Sigma, \delta', s', A)$. Add new start state s' and ϵ -transition from s' to each state in X.

Claim: L(N) = SUFFIX(L).

Part III

DFA to Regular Expressions

DFA to Regular Expressions

Theorem

Given a DFA $M = (Q, \Sigma, \delta, s, A)$ there is a regular expression r such that L(r) = L(M). That is, regular expressions are as powerful as DFAs (and hence also NFAs).

- Simple algorithm but formal proof is involved. See notes.
- An easier proof via a more involved algorithm later in course.

Stage 0: Input

Stage 1: Normalizing

2: Normalizing it.

Stage 2: Remove state A

Stage 4: Redrawn without old edges

Stage 4: Removing B

Stage 5: Redraw

Stage 6: Removing C

Stage 7: Redraw

$$- \underbrace{(ab^*a + b)(a + b)^*}_{\text{(AC)}}$$

Stage 8: Extract regular expression

Thus, this automata is equivalent to the regular expression $(ab^*a + b)(a + b)^*$.