
Algorithms & Models of Computation
CS/ECE 374 B, Spring 2020

Depth First Search (DFS)
Lecture 16
Friday, March 20, 2020

LATEXed: January 19, 2020 04:19

Miller, Hassanieh (UIUC) CS374 1 Spring 2020 1 / 60



Today

Two topics:

Structure of directed graphs

DFS and its properties

One application of DFS to obtain fast algorithms

Miller, Hassanieh (UIUC) CS374 2 Spring 2020 2 / 60



Part I

Strong connected components

Miller, Hassanieh (UIUC) CS374 3 Spring 2020 3 / 60



Strong Connected Components (SCCs)

Algorithmic Problem
Find all SCCs of a given directed graph.

Previous lecture:
Saw an O(n · (n + m)) time algorithm.
This lecture: sketch of a O(n + m) time
algorithm.

AB C

DE F

G H

Miller, Hassanieh (UIUC) CS374 4 Spring 2020 4 / 60



Graph of SCCs

G:

AB C

DE F

G H

B,E, F

G H

A,C,D

Graph of SCCs GSCC

Meta-graph of SCCs

Let S1, S2, . . . Sk be the strong connected components (i.e., SCCs)
of G. The graph of SCCs is GSCC

1 Vertices are S1, S2, . . . Sk

2 There is an edge (Si , Sj) if there is some u ∈ Si and v ∈ Sj
such that (u, v) is an edge in G.

Miller, Hassanieh (UIUC) CS374 5 Spring 2020 5 / 60



Reversal and SCCs

Proposition
For any graph G, the graph of SCCs of G rev is the same as the
reversal of GSCC.

Proof.
Exercise.

Miller, Hassanieh (UIUC) CS374 6 Spring 2020 6 / 60



SCCs and DAGs

Proposition

For any graph G, the graph GSCC has no directed cycle.

Proof.

If GSCC has a cycle S1, S2, . . . , Sk then S1 ∪ S2 ∪ · · · ∪ Sk should
be in the same SCC in G. Formal details: exercise.

Miller, Hassanieh (UIUC) CS374 7 Spring 2020 7 / 60



Part II

Directed Acyclic Graphs

Miller, Hassanieh (UIUC) CS374 8 Spring 2020 8 / 60



Directed Acyclic Graphs

Definition
A directed graph G is a
directed acyclic graph
(DAG) if there is no directed
cycle in G. 1

2 3

4

Miller, Hassanieh (UIUC) CS374 9 Spring 2020 9 / 60



Is this a DAG?

a

c

b

g

v

d

s

i

f

wu

k

tm

o

l

n

p

q

r

h

j

e

k

p

r

j

m

o

g

ih

q

s

t

n

l

v

wu

f

e

c

a

b

d

Miller, Hassanieh (UIUC) CS374 10 Spring 2020 10 / 60



Is this a DAG?

a

c

b

g

v

d

s

i

f

wu

k

tm

o

l

n

p

q

r

h

j

e

k

p

r

j

m

o

g

ih

q

s

t

n

l

v

wu

f

e

c

a

b

d

Miller, Hassanieh (UIUC) CS374 10 Spring 2020 10 / 60



Sources and Sinks

source sink

1

2 3

4

Definition
1 A vertex u is a source if it has no in-coming edges.

2 A vertex u is a sink if it has no out-going edges.

Miller, Hassanieh (UIUC) CS374 11 Spring 2020 11 / 60



Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G . Claim that v1 is a
source and vk is a sink. Suppose not. Then v1 has an incoming edge
which either creates a cycle or a longer path both of which are
contradictions. Similarly if vk has an outgoing edge.

1 G is a DAG if and only if Grev is a DAG.

2 G is a DAG if and only each node is in its own strong
connected component.

Formal proofs: exercise.

Miller, Hassanieh (UIUC) CS374 12 Spring 2020 12 / 60



Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G . Claim that v1 is a
source and vk is a sink. Suppose not. Then v1 has an incoming edge
which either creates a cycle or a longer path both of which are
contradictions. Similarly if vk has an outgoing edge.

1 G is a DAG if and only if Grev is a DAG.

2 G is a DAG if and only each node is in its own strong
connected component.

Formal proofs: exercise.

Miller, Hassanieh (UIUC) CS374 12 Spring 2020 12 / 60



Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G . Claim that v1 is a
source and vk is a sink. Suppose not. Then v1 has an incoming edge
which either creates a cycle or a longer path both of which are
contradictions. Similarly if vk has an outgoing edge.

1 G is a DAG if and only if Grev is a DAG.

2 G is a DAG if and only each node is in its own strong
connected component.

Formal proofs: exercise.

Miller, Hassanieh (UIUC) CS374 12 Spring 2020 12 / 60



Topological Ordering/Sorting

1

2 3

4

Graph G

1 2 3 4

Topological Ordering of G

Definition
A topological ordering/topological sorting of G = (V ,E) is an
ordering ≺ on V such that if (u, v) ∈ E then u ≺ v .

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis)
such that all edges are from left to right.

Miller, Hassanieh (UIUC) CS374 13 Spring 2020 13 / 60



DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered iff it is a DAG.

Need to show both directions.

Miller, Hassanieh (UIUC) CS374 14 Spring 2020 14 / 60



DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered if it is a DAG.

Proof.
Consider the following algorithm:

1 Pick a source u, output it.

2 Remove u and all edges out of u.

3 Repeat until graph is empty.

Exercise: prove this gives topological sort.

Exercise: show algorithm can be implemented in O(m + n) time.

Miller, Hassanieh (UIUC) CS374 15 Spring 2020 15 / 60



DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered if it is a DAG.

Proof.
Consider the following algorithm:

1 Pick a source u, output it.

2 Remove u and all edges out of u.

3 Repeat until graph is empty.

Exercise: prove this gives topological sort.

Exercise: show algorithm can be implemented in O(m + n) time.

Miller, Hassanieh (UIUC) CS374 15 Spring 2020 15 / 60



DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered if it is a DAG.

Proof.
Consider the following algorithm:

1 Pick a source u, output it.

2 Remove u and all edges out of u.

3 Repeat until graph is empty.

Exercise: prove this gives topological sort.

Exercise: show algorithm can be implemented in O(m + n) time.

Miller, Hassanieh (UIUC) CS374 15 Spring 2020 15 / 60



Topological Sort: Example

a b c

d e

f g

h

Miller, Hassanieh (UIUC) CS374 16 Spring 2020 16 / 60



DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered only if it is a DAG.

Proof.
Suppose G is not a DAG and has a topological ordering ≺. G has a
cycle C = u1, u2, . . . , uk , u1.
Then u1 ≺ u2 ≺ . . . ≺ uk ≺ u1!
That is... u1 ≺ u1.
A contradiction (to ≺ being an order).
Not possible to topologically order the vertices.

Miller, Hassanieh (UIUC) CS374 17 Spring 2020 17 / 60



DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered only if it is a DAG.

Proof.
Suppose G is not a DAG and has a topological ordering ≺. G has a
cycle C = u1, u2, . . . , uk , u1.
Then u1 ≺ u2 ≺ . . . ≺ uk ≺ u1!
That is... u1 ≺ u1.
A contradiction (to ≺ being an order).
Not possible to topologically order the vertices.

Miller, Hassanieh (UIUC) CS374 17 Spring 2020 17 / 60



DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the most number of distinct
topological sorts for a given number n of vertices?

Question: What is a DAG with the least number of distinct
topological sorts for a given number n of vertices?

Miller, Hassanieh (UIUC) CS374 18 Spring 2020 18 / 60



Cycles in graphs

Question: Given an undirected graph how do we check whether it
has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has
a cycle and output one if it has one?

Miller, Hassanieh (UIUC) CS374 19 Spring 2020 19 / 60



To Remember: Structure of Graphs

Undirected graph: connected components of G = (V ,E)
partition V and can be computed in O(m + n) time.

Directed graph: the meta-graph GSCC of G can be computed in
O(m + n) time. GSCC gives information on the partition of V into
strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms

Miller, Hassanieh (UIUC) CS374 20 Spring 2020 20 / 60



Part III

Depth First Search (DFS)

Miller, Hassanieh (UIUC) CS374 21 Spring 2020 21 / 60



Depth First Search

1 DFS special case of Basic Search.

2 DFS is useful in understanding graph structure.
3 DFS used to obtain linear time (O(m + n)) algorithms for

1 Finding cut-edges and cut-vertices of undirected graphs
2 Finding strong connected components of directed graphs
3 Linear time algorithm for testing whether a graph is planar

4 ...many other applications as well.

Miller, Hassanieh (UIUC) CS374 22 Spring 2020 22 / 60



DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

DFS(G)
for all u ∈ V (G) do

Mark u as unvisited

Set pred(u) to null

T is set to ∅
while ∃ unvisited u do

DFS(u)
Output T

DFS(u)
Mark u as visited

for each uv in Out(u) do
if v is not visited then

add edge uv to T
set pred(v) to u
DFS(v)

Implemented using a global array Visited for all recursive calls.
T is the search tree/forest.

Miller, Hassanieh (UIUC) CS374 23 Spring 2020 23 / 60



Example

1

2 3

4 5

6

7

8

9

10

Edges classified into two types: uv ∈ E is a

1 tree edge: belongs to T
2 non-tree edge: does not belong to T

Miller, Hassanieh (UIUC) CS374 24 Spring 2020 24 / 60



Properties of DFS tree

Proposition
1 T is a forest

2 connected components of T are same as those of G .
3 If uv ∈ E is a non-tree edge then, in T , either:

1 u is an ancestor of v , or
2 v is an ancestor of u.

Question: Why are there no cross-edges?

Miller, Hassanieh (UIUC) CS374 25 Spring 2020 25 / 60



DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)
for all u ∈ V (G) do

Mark u as unvisited

T is set to ∅
time = 0
while ∃unvisited u do

DFS(u)
Output T

DFS(u)
Mark u as visited

pre(u) = ++time
for each uv in Out(u) do

if v is not marked then
add edge uv to T
DFS(v)

post(u) = ++time

Miller, Hassanieh (UIUC) CS374 26 Spring 2020 26 / 60



Example

1

2 3

4 5

6

7

8

9

10

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

vertex [pre, post]
1 [1, ]

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

vertex [pre, post]
1 [1, ]
2 [2, ]

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

vertex [pre, post]
1 [1, ]
2 [2, ]
4 [3, ]

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

vertex [pre, post]
1 [1, ]
2 [2, ]
4 [3, ]
5 [4, ]

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

vertex [pre, post]
1 [1, ]
2 [2, ]
4 [3, ]
5 [4, ]

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

vertex [pre, post]
1 [1, ]
2 [2, ]
4 [3, ]
5 [4, ]
6 [5, 6]

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

vertex [pre, post]
1 [1, ]
2 [2, ]
4 [3, ]
5 [4, ]
6 [5, 6]
3 [7, ]

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

vertex [pre, post]
1 [1, ]
2 [2, ]
4 [3, ]
5 [4, ]
6 [5, 6]
3 [7, ]
7 [8, ]

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

vertex [pre, post]
1 [1, ]
2 [2, ]
4 [3, ]
5 [4, ]
6 [5, 6]
3 [7, ]
7 [8, ]
8 [9, ]

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

vertex [pre, post]
1 [1, ]
2 [2, ]
4 [3, ]
5 [4, ]
6 [5, 6]
3 [7, ]
7 [8, ]
8 [9, 10]

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

vertex [pre, post]
1 [1, ]
2 [2, ]
4 [3, ]
5 [4, ]
6 [5, 6]
3 [7, ]
7 [8, 11]
8 [9, 10]

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

vertex [pre, post]
1 [1, ]
2 [2, ]
4 [3, ]
5 [4, ]
6 [5, 6]
3 [7, 12]
7 [8, 11]
8 [9, 10]

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

vertex [pre, post]
1 [1, ]
2 [2, ]
4 [3, ]
5 [4, 13]

6 [5, 6]
3 [7, 12]
7 [8, 11]
8 [9, 10]

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

vertex [pre, post]
1 [1, ]
2 [2, ]
4 [3, 14]
5 [4, 13]
6 [5, 6]
3 [7, 12]
7 [8, 11]
8 [9, 10]

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

vertex [pre, post]
1 [1, ]
2 [2, 15]
4 [3, 14]
5 [4, 13]
6 [5, 6]
3 [7, 12]
7 [8, 11]
8 [9, 10]

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

vertex [pre, post]
1 [1, 16]
2 [2, 15]
4 [3, 14]
5 [4, 13]
6 [5, 6]
3 [7, 12]
7 [8, 11]
8 [9, 10]

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



Example

1

2 3

4 5

6

7

8

9

10

1

2 3

4 5

6

7

8

9

10

vertex [pre, post]
1 [1, 16]
2 [2, 15]
4 [3, 14]
5 [4, 13]
6 [5, 6]
3 [7, 12]
7 [8, 11]
8 [9, 10]

9 [17, 20]
10 [18, 19]

Miller, Hassanieh (UIUC) CS374 27 Spring 2020 27 / 60



pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v , the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

Proof.
Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.

If DFS(v) invoked before DFS(u) finished,
post(v) < post(u).

If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS

Miller, Hassanieh (UIUC) CS374 28 Spring 2020 28 / 60



pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v , the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.

If DFS(v) invoked before DFS(u) finished,
post(v) < post(u).

If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS

Miller, Hassanieh (UIUC) CS374 28 Spring 2020 28 / 60



pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v , the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

Proof.
Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.

If DFS(v) invoked before DFS(u) finished,
post(v) < post(u).

If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS

Miller, Hassanieh (UIUC) CS374 28 Spring 2020 28 / 60



pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v , the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

Proof.
Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.

If DFS(v) invoked before DFS(u) finished,
post(v) < post(u).

If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS

Miller, Hassanieh (UIUC) CS374 28 Spring 2020 28 / 60



pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v , the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

Proof.
Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.

If DFS(v) invoked before DFS(u) finished,
post(v) < post(u).

If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS

Miller, Hassanieh (UIUC) CS374 28 Spring 2020 28 / 60



pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v , the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

Proof.
Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.

If DFS(v) invoked before DFS(u) finished,
post(v) < post(u).

If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS

Miller, Hassanieh (UIUC) CS374 28 Spring 2020 28 / 60



DFS in Directed Graphs

DFS(G)
Mark all nodes u as unvisited

T is set to ∅
time = 0
while there is an unvisited node u do

DFS(u)
Output T

DFS(u)
Mark u as visited

pre(u) = ++time
for each edge (u, v) in Out(u) do

if v is not visited

add edge (u, v) to T
DFS(v)

post(u) = ++time

Miller, Hassanieh (UIUC) CS374 29 Spring 2020 29 / 60



Example

AB C

DE F

G H

Miller, Hassanieh (UIUC) CS374 30 Spring 2020 30 / 60



Example

AB C

DE F

G H

[1, 16]

[2, 11] [12, 15]

[13, 14][3, 10] [6, 7]

[4, 5]

[8, 9]

AB C

DE F

G H

Miller, Hassanieh (UIUC) CS374 30 Spring 2020 30 / 60



DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(G) takes O(m + n) time.

2 Edges added form a branching: a forest of out-trees. Output of
DFS(G) depends on the order in which vertices are considered.

3 If u is the first vertex considered by DFS(G) then DFS(u)
outputs a directed out-tree T rooted at u and a vertex v is in
T if and only if v ∈ rch(u)

4 For any two vertices x, y the intervals [pre(x), post(x)] and
[pre(y), post(y)] are either disjoint or one is contained in the
other.

Note: Not obvious whether DFS(G) is useful in directed graphs but
it is.

Miller, Hassanieh (UIUC) CS374 31 Spring 2020 31 / 60



DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(G) takes O(m + n) time.

2 Edges added form a branching: a forest of out-trees. Output of
DFS(G) depends on the order in which vertices are considered.

3 If u is the first vertex considered by DFS(G) then DFS(u)
outputs a directed out-tree T rooted at u and a vertex v is in
T if and only if v ∈ rch(u)

4 For any two vertices x, y the intervals [pre(x), post(x)] and
[pre(y), post(y)] are either disjoint or one is contained in the
other.

Note: Not obvious whether DFS(G) is useful in directed graphs but
it is.

Miller, Hassanieh (UIUC) CS374 31 Spring 2020 31 / 60



DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(G) takes O(m + n) time.

2 Edges added form a branching: a forest of out-trees. Output of
DFS(G) depends on the order in which vertices are considered.

3 If u is the first vertex considered by DFS(G) then DFS(u)
outputs a directed out-tree T rooted at u and a vertex v is in
T if and only if v ∈ rch(u)

4 For any two vertices x, y the intervals [pre(x), post(x)] and
[pre(y), post(y)] are either disjoint or one is contained in the
other.

Note: Not obvious whether DFS(G) is useful in directed graphs but
it is.

Miller, Hassanieh (UIUC) CS374 31 Spring 2020 31 / 60



DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(G) takes O(m + n) time.

2 Edges added form a branching: a forest of out-trees. Output of
DFS(G) depends on the order in which vertices are considered.

3 If u is the first vertex considered by DFS(G) then DFS(u)
outputs a directed out-tree T rooted at u and a vertex v is in
T if and only if v ∈ rch(u)

4 For any two vertices x, y the intervals [pre(x), post(x)] and
[pre(y), post(y)] are either disjoint or one is contained in the
other.

Note: Not obvious whether DFS(G) is useful in directed graphs but
it is.

Miller, Hassanieh (UIUC) CS374 31 Spring 2020 31 / 60



DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(G) takes O(m + n) time.

2 Edges added form a branching: a forest of out-trees. Output of
DFS(G) depends on the order in which vertices are considered.

3 If u is the first vertex considered by DFS(G) then DFS(u)
outputs a directed out-tree T rooted at u and a vertex v is in
T if and only if v ∈ rch(u)

4 For any two vertices x, y the intervals [pre(x), post(x)] and
[pre(y), post(y)] are either disjoint or one is contained in the
other.

Note: Not obvious whether DFS(G) is useful in directed graphs but
it is.

Miller, Hassanieh (UIUC) CS374 31 Spring 2020 31 / 60



DFS Tree

Edges of G can be classified with respect to the DFS tree T as:

1 Tree edges that belong to T
2 A forward edge is a non-tree edges (x, y) such that

pre(x) < pre(y) < post(y) < post(x).

3 A backward edge is a non-tree edge (y , x) such that
pre(x) < pre(y) < post(y) < post(x).

4 A cross edge is a non-tree edges (x, y) such that the intervals
[pre(x), post(x)] and [pre(y), post(y)] are disjoint.

Miller, Hassanieh (UIUC) CS374 32 Spring 2020 32 / 60



Types of Edges

A

C D
Cross

Forward
Backward

B

Miller, Hassanieh (UIUC) CS374 33 Spring 2020 33 / 60



Cycles in graphs

Question: Given an undirected graph how do we check whether it
has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has
a cycle and output one if it has one?

Miller, Hassanieh (UIUC) CS374 34 Spring 2020 34 / 60



Using DFS...
... to check for Acylicity and compute Topological Ordering

Question
Given G, is it a DAG? If it is, generate a topological sort. Else
output a cycle C .

DFS based algorithm:

1 Compute DFS(G)

2 If there is a back edge e = (v , u) then G is not a DAG. Output
cyclce C formed by path from u to v in T plus edge (v , u).

3 Otherwise output nodes in decreasing post-visit order. Note: no
need to sort, DFS(G) can output nodes in this order.

Algorithm runs in O(n + m) time.
Correctness is not so obvious. See next two propositions.

Miller, Hassanieh (UIUC) CS374 35 Spring 2020 35 / 60



Using DFS...
... to check for Acylicity and compute Topological Ordering

Question
Given G, is it a DAG? If it is, generate a topological sort. Else
output a cycle C .

DFS based algorithm:

1 Compute DFS(G)

2 If there is a back edge e = (v , u) then G is not a DAG. Output
cyclce C formed by path from u to v in T plus edge (v , u).

3 Otherwise output nodes in decreasing post-visit order. Note: no
need to sort, DFS(G) can output nodes in this order.

Algorithm runs in O(n + m) time.

Correctness is not so obvious. See next two propositions.

Miller, Hassanieh (UIUC) CS374 35 Spring 2020 35 / 60



Using DFS...
... to check for Acylicity and compute Topological Ordering

Question
Given G, is it a DAG? If it is, generate a topological sort. Else
output a cycle C .

DFS based algorithm:

1 Compute DFS(G)

2 If there is a back edge e = (v , u) then G is not a DAG. Output
cyclce C formed by path from u to v in T plus edge (v , u).

3 Otherwise output nodes in decreasing post-visit order. Note: no
need to sort, DFS(G) can output nodes in this order.

Algorithm runs in O(n + m) time.
Correctness is not so obvious. See next two propositions.

Miller, Hassanieh (UIUC) CS374 35 Spring 2020 35 / 60



Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in DFS(G).

Proof.
If: (u, v) is a back edge implies there is a cycle C consisting of the
path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle C = v1 → v2 → . . .→ vk → v1.
Let vi be first node in C visited in DFS.
All other nodes in C are descendants of vi since they are reachable
from vi .
Therefore, (vi−1, vi) (or (vk , v1) if i = 1) is a back edge.

Miller, Hassanieh (UIUC) CS374 36 Spring 2020 36 / 60



Proof

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G.

Proof.
Assume post(v) > post(u) and (u, v) is an edge in G . We derive
a contradiction. One of two cases holds from DFS property.

Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
Implies that u is explored during DFS(v) and hence is a
descendent of v . Edge (u, v) implies a cycle in G but G is
assumed to be DAG!

Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].
This cannot happen since v would be explored from u.

Miller, Hassanieh (UIUC) CS374 37 Spring 2020 37 / 60



Example

a b c

d e

f g

h

Miller, Hassanieh (UIUC) CS374 38 Spring 2020 38 / 60



Part IV

Linear time algorithm for finding all
strong connected components of a

directed graph

Miller, Hassanieh (UIUC) CS374 39 Spring 2020 39 / 60



Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V ,E), output all its strong connected
components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex u ∈ V not visited yet do
find SCC(G , u) the strong component of u:

Compute rch(G , u) using DFS(G , u)
Compute rch(G rev, u) using DFS(G rev, u)
SCC(G , u)⇐ rch(G , u) ∩ rch(G rev, u)
∀u ∈ SCC(G , u): Mark u as visited.

Running time: O(n(n + m))
Is there an O(n + m) time algorithm?

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 60



Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V ,E), output all its strong connected
components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex u ∈ V not visited yet do
find SCC(G , u) the strong component of u:

Compute rch(G , u) using DFS(G , u)
Compute rch(G rev, u) using DFS(G rev, u)
SCC(G , u)⇐ rch(G , u) ∩ rch(G rev, u)
∀u ∈ SCC(G , u): Mark u as visited.

Running time: O(n(n + m))

Is there an O(n + m) time algorithm?

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 60



Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V ,E), output all its strong connected
components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex u ∈ V not visited yet do
find SCC(G , u) the strong component of u:

Compute rch(G , u) using DFS(G , u)
Compute rch(G rev, u) using DFS(G rev, u)
SCC(G , u)⇐ rch(G , u) ∩ rch(G rev, u)
∀u ∈ SCC(G , u): Mark u as visited.

Running time: O(n(n + m))
Is there an O(n + m) time algorithm?

Miller, Hassanieh (UIUC) CS374 40 Spring 2020 40 / 60



Structure of a Directed Graph

AB C

DE F

G H

Graph G

B,E , F

G H

A,C ,D

Graph of SCCs GSCC

Reminder

GSCC is created by collapsing every strong connected component to a
single vertex.

Proposition

For a directed graph G, its meta-graph GSCC is a DAG.

Miller, Hassanieh (UIUC) CS374 41 Spring 2020 41 / 60



Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm
1 Let u be a vertex in a sink SCC of GSCC

2 Do DFS(u) to compute SCC(u)
3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)
2

3

4

Miller, Hassanieh (UIUC) CS374 42 Spring 2020 42 / 60



Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm
1 Let u be a vertex in a sink SCC of GSCC

2 Do DFS(u) to compute SCC(u)
3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)

2

3

4

Miller, Hassanieh (UIUC) CS374 42 Spring 2020 42 / 60



Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm
1 Let u be a vertex in a sink SCC of GSCC

2 Do DFS(u) to compute SCC(u)
3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)
2 ... since there are no edges coming out a sink!

3

4

Miller, Hassanieh (UIUC) CS374 42 Spring 2020 42 / 60



Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm
1 Let u be a vertex in a sink SCC of GSCC

2 Do DFS(u) to compute SCC(u)
3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)
2 ... since there are no edges coming out a sink!

3 DFS(u) takes time proportional to size of SCC(u)
4

Miller, Hassanieh (UIUC) CS374 42 Spring 2020 42 / 60



Linear-time Algorithm for SCCs: Ideas
Exploit structure of meta-graph...

Wishful Thinking Algorithm
1 Let u be a vertex in a sink SCC of GSCC

2 Do DFS(u) to compute SCC(u)
3 Remove SCC(u) and repeat

Justification
1 DFS(u) only visits vertices (and edges) in SCC(u)
2 ... since there are no edges coming out a sink!

3 DFS(u) takes time proportional to size of SCC(u)
4 Therefore, total time O(n + m)!

Miller, Hassanieh (UIUC) CS374 42 Spring 2020 42 / 60



Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without
computing GSCC?

Answer: DFS(G) gives some information!

Miller, Hassanieh (UIUC) CS374 43 Spring 2020 43 / 60



Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without
computing GSCC?

Answer: DFS(G) gives some information!

Miller, Hassanieh (UIUC) CS374 43 Spring 2020 43 / 60



Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without
computing GSCC?

Answer: DFS(G) gives some information!

Miller, Hassanieh (UIUC) CS374 43 Spring 2020 43 / 60



Linear Time Algorithm
...for computing the strong connected components in G

do DFS(G rev) and output vertices in decreasing post order.

Mark all nodes as unvisited

for each u in the computed order do
if u is not visited then

DFS(u)
Let Su be the nodes reached by u
Output Su as a strong connected component

Remove Su from G

Theorem
Algorithm runs in time O(m + n) and correctly outputs all the SCCs
of G .

Miller, Hassanieh (UIUC) CS374 44 Spring 2020 44 / 60



Linear Time Algorithm: An Example - Initial steps

Graph G:

G

FE

B C

D

H

A

=⇒

Reverse graph G rev:

G

FE

B C

D

H

A

=⇒

DFS of reverse graph:

G

FE

B C

D

H

A

=⇒

Pre/Post DFS numbering
of reverse graph:

6][1,

[7, 12]

[9, 10] [8, 11]

[13, 16]

[14, 15]

[2, 5]

[3, 4]

G

FE

B C

D

H

A

Miller, Hassanieh (UIUC) CS374 45 Spring 2020 45 / 60



Linear Time Algorithm: An Example
Removing connected components: 1

Original graph G with rev post
numbers:

G

FE

B C

D

H

A

16

11

612

10

15

5

4 =⇒

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}

Miller, Hassanieh (UIUC) CS374 46 Spring 2020 46 / 60



Linear Time Algorithm: An Example
Removing connected components: 2

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}

=⇒

Do DFS from vertex H ,
remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}

Miller, Hassanieh (UIUC) CS374 47 Spring 2020 47 / 60



Linear Time Algorithm: An Example
Removing connected components: 3

Do DFS from vertex H ,
remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}

=⇒

Do DFS from vertex B
Remove visited vertices:
{F ,B,E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F ,B,E}

Miller, Hassanieh (UIUC) CS374 48 Spring 2020 48 / 60



Linear Time Algorithm: An Example
Removing connected components: 4

Do DFS from vertex F
Remove visited vertices:
{F ,B,E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F ,B,E}

=⇒

Do DFS from vertex A
Remove visited vertices:
{A,C ,D}.

SCC computed:
{G}, {H}, {F ,B,E}, {A,C ,D}

Miller, Hassanieh (UIUC) CS374 49 Spring 2020 49 / 60



Linear Time Algorithm: An Example
Final result

G

FE

B C

D

H

A

SCC computed:
{G}, {H}, {F ,B,E}, {A,C ,D}
Which is the correct answer!

Miller, Hassanieh (UIUC) CS374 50 Spring 2020 50 / 60



Obtaining the meta-graph...
Once the strong connected components are computed.

Exercise:
Given all the strong connected components of a directed graph
G = (V ,E) show that the meta-graph GSCC can be obtained in
O(m + n) time.

Miller, Hassanieh (UIUC) CS374 51 Spring 2020 51 / 60



Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

Is the problem solvable when G is strongly connected?

Is the problem solvable when G is a DAG?

If the above two are feasible then is the problem solvable in a
general directed graph G by considering the meta graph GSCC?

Miller, Hassanieh (UIUC) CS374 52 Spring 2020 52 / 60



Part V

An Application to make

Miller, Hassanieh (UIUC) CS374 53 Spring 2020 53 / 60



Make/Makefile

(A) I know what make/makefile is.

(B) I do NOT know what make/makefile is.

Miller, Hassanieh (UIUC) CS374 54 Spring 2020 54 / 60



make Utility [Feldman]

1 Unix utility for automatically building large software applications
2 A makefile specifies

1 Object files to be created,
2 Source/object files to be used in creation, and
3 How to create them

Miller, Hassanieh (UIUC) CS374 55 Spring 2020 55 / 60



An Example makefile

project: main.o utils.o command.o

cc -o project main.o utils.o command.o

main.o: main.c defs.h

cc -c main.c

utils.o: utils.c defs.h command.h

cc -c utils.c

command.o: command.c defs.h command.h

cc -c command.c

Miller, Hassanieh (UIUC) CS374 56 Spring 2020 56 / 60



makefile as a Digraph

project

main.o

utils.o

command.o

main.c

utils.c

defs.h

command.h

command.c

Miller, Hassanieh (UIUC) CS374 57 Spring 2020 57 / 60



Computational Problems for make

1 Is the makefile reasonable?

2 If it is reasonable, in what order should the object files be
created?

3 If it is not reasonable, provide helpful debugging information.

4 If some file is modified, find the fewest compilations needed to
make application consistent.

Miller, Hassanieh (UIUC) CS374 58 Spring 2020 58 / 60



Algorithms for make

1 Is the makefile reasonable? Is G a DAG?

2 If it is reasonable, in what order should the object files be
created? Find a topological sort of a DAG.

3 If it is not reasonable, provide helpful debugging information.
Output a cycle. More generally, output all strong connected
components.

4 If some file is modified, find the fewest compilations needed to
make application consistent.

1 Find all vertices reachable (using DFS/BFS) from modified
files in directed graph, and recompile them in proper order.
Verify that one can find the files to recompile and the ordering
in linear time.

Miller, Hassanieh (UIUC) CS374 59 Spring 2020 59 / 60



Take away Points

1 Given a directed graph G, its SCCs and the associated acyclic
meta-graph GSCC give a structural decomposition of G that
should be kept in mind.

2 There is a DFS based linear time algorithm to compute all the
SCCs and the meta-graph. Properties of DFS crucial for the
algorithm.

3 DAGs arise in many application and topological sort is a key
property in algorithm design. Linear time algorithms to compute
a topological sort (there can be many possible orderings so not
unique).

Miller, Hassanieh (UIUC) CS374 60 Spring 2020 60 / 60


	Strong connected components
	Directed Acyclic Graphs
	Depth First Search (DFS)
	DFS in Directed Graphs

	Linear time algorithm for finding all strong connected components of a directed graph
	An Application to make
	make utility
	Computational Problems



