Algorithms \& Models of Computation

 CS/ECE 374 B, Spring 2020
Depth First Search (DFS)

Lecture 16
Friday, March 20, 2020

Today

Two topics:

- Structure of directed graphs
- DFS and its properties
- One application of DFS to obtain fast algorithms

Part I

Strong connected components

Strong Connected Components (SCCs)

Algorithmic Problem

Find all SCCs of a given directed graph.
Previous lecture:
Saw an $O(n \cdot(n+m))$ time algorithm. This lecture: sketch of a $O(n+m)$ time algorithm.

Graph of SCCs

Graph of SCCs $G^{\text {SCC }}$

Meta-graph of SCCs

Let $S_{1}, S_{2}, \ldots S_{k}$ be the strong connected components (i.e., SCCs) of G. The graph of SCCs is G^{SCC}
(1) Vertices are $S_{1}, S_{2}, \ldots S_{k}$
(2) There is an edge $\left(S_{i}, S_{j}\right)$ if there is some $\boldsymbol{u} \in S_{i}$ and $v \in S_{j}$ such that (u, v) is an edge in G.

Reversal and SCCs

Proposition

For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC}.

Proof.

Exercise.

MUTTS by Patrick McDonnell | 08/04/11

SCCs and DAGs

Proposition

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If $\mathrm{G}^{\text {SCC }}$ has a cycle $S_{1}, S_{2}, \ldots, S_{k}$ then $S_{1} \cup S_{2} \cup \cdots \cup S_{k}$ should be in the same SCC in G . Formal details: exercise.

Part II

Directed Acyclic Graphs

Directed Acyclic Graphs

Definition

A directed graph G is a directed acyclic graph (DAG) if there is no directed cycle in G.

Is this a DAG?

Is this a DAG?

Sources and Sinks

Definition

(1) A vertex \boldsymbol{u} is a source if it has no in-coming edges.
(2) A vertex \boldsymbol{u} is a sink if it has no out-going edges.

Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a longest path in G. Claim that v_{1} is a source and $v_{\boldsymbol{k}}$ is a sink. Suppose not. Then v_{1} has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if $\boldsymbol{v}_{\boldsymbol{k}}$ has an outgoing edge.

Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a longest path in G. Claim that v_{1} is a source and $v_{\boldsymbol{k}}$ is a sink. Suppose not. Then v_{1} has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if $\boldsymbol{v}_{\boldsymbol{k}}$ has an outgoing edge.
(1) G is a DAG if and only if $G^{\text {rev }}$ is a DAG.
(2) G is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise.

Topological Ordering/Sorting

Topological Ordering of G
Graph G

Definition

A topological ordering/topological sorting of $G=(V, E)$ is an ordering \prec on V such that if $(u, v) \in E$ then $u \prec v$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered iff it is a DAG.
Need to show both directions.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered if it is a DAG.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered if it is a DAG.

Proof.

Consider the following algorithm:
(1) Pick a source \boldsymbol{u}, output it.
(2) Remove \boldsymbol{u} and all edges out of \boldsymbol{u}.
(3) Repeat until graph is empty.

Exercise: prove this gives topological sort.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered if it is a DAG.

Proof.

Consider the following algorithm:
(1) Pick a source \boldsymbol{u}, output it.
(2) Remove \boldsymbol{u} and all edges out of \boldsymbol{u}.
(3) Repeat until graph is empty.

Exercise: prove this gives topological sort.
Exercise: show algorithm can be implemented in $O(m+n)$ time.

Topological Sort: Example

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered only if it is a DAG.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered only if it is a DAG.

Proof.

Suppose G is not a DAG and has a topological ordering \prec. G has a cycle $C=u_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}, \boldsymbol{u}_{1}$.
Then $\boldsymbol{u}_{1} \prec \boldsymbol{u}_{2} \prec \ldots \prec \boldsymbol{u}_{k} \prec \boldsymbol{u}_{1}$!
That is... $u_{1} \prec u_{1}$.
A contradiction (to \prec being an order).
Not possible to topologically order the vertices.

DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.
Question: What is a DAG with the most number of distinct topological sorts for a given number \boldsymbol{n} of vertices?

Question: What is a DAG with the least number of distinct topological sorts for a given number \boldsymbol{n} of vertices?

Cycles in graphs

Question: Given an undirected graph how do we check whether it has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has a cycle and output one if it has one?

To Remember: Structure of Graphs

Undirected graph: connected components of $G=(V, E)$ partition V and can be computed in $O(m+n)$ time.

Directed graph: the meta-graph $G^{S C C}$ of G can be computed in $O(m+n)$ time. $G^{S C C}$ gives information on the partition of V into strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms

Part III

Depth First Search (DFS)

Depth First Search

(1) DFS special case of Basic Search.
(2) DFS is useful in understanding graph structure.
(3) DFS used to obtain linear time $(O(m+n))$ algorithms for
(1) Finding cut-edges and cut-vertices of undirected graphs
(2) Finding strong connected components of directed graphs
(3) Linear time algorithm for testing whether a graph is planar
(9) ...many other applications as well.

DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

DFS(G)

```
for all u\inV(G) do
            Mark u as unvisited
            Set pred(u) to null
    T}\mathrm{ is set to Ø
    while \exists unvisited u do
        DFS(u)
    Output T
```


DFS (\boldsymbol{u})

Mark u as visited for each $u \boldsymbol{v}$ in Out(u) do if \boldsymbol{v} is not visited then add edge $\boldsymbol{u v}$ to \boldsymbol{T} set $\operatorname{pred}(\boldsymbol{v})$ to \boldsymbol{u} DFS(v)

Implemented using a global array Visited for all recursive calls. T is the search tree/forest.

Example

Edges classified into two types: $\boldsymbol{u v} \in E$ is a
(1) tree edge: belongs to T
(2) non-tree edge: does not belong to T

Properties of DFS tree

Proposition

(1) \boldsymbol{T} is a forest
(2) connected components of \boldsymbol{T} are same as those of G.
(3) If $\boldsymbol{u} \boldsymbol{v} \in E$ is a non-tree edge then, in \boldsymbol{T}, either:
(1) \boldsymbol{u} is an ancestor of \boldsymbol{v}, or
(2) \boldsymbol{v} is an ancestor of \boldsymbol{u}.

Question: Why are there no cross-edges?

DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)

for all $u \in V(G)$ do
Mark u as unvisited
\boldsymbol{T} is set to \emptyset
time $=0$
while ヨunvisited \boldsymbol{u} do DFS(u)
Output \boldsymbol{T}

DFS (\boldsymbol{u})

$$
\begin{aligned}
& \text { Mark } \boldsymbol{u} \text { as visited } \\
& \text { pre }(\boldsymbol{u})=++ \text { time } \\
& \text { for each } \boldsymbol{u v} \text { in Out }(\boldsymbol{u}) \text { do } \\
& \text { if } \boldsymbol{v} \text { is not marked then } \\
& \text { add edge } \boldsymbol{u v} \text { to } T \\
& \text { DFS(v) } \\
& \operatorname{post}(\boldsymbol{u})=++\boldsymbol{t i m e}
\end{aligned}
$$

Example

vertex	$[$ pre, post $]$
1	$[1]$,
2	$[2]$,
4	$[3]$,
5	$[4]$,
6	$[5,6]$
3	$[7]$,
7	$[8]$,
8	$[9,10]$

Example

vertex	$[$ pre, post $]$
1	$[1]$,
2	$[2]$,
4	$[3]$,
5	$[4]$,
6	$[5,6]$
3	$[7]$,
7	$[8,11]$
8	$[9,10]$

Example

vertex	$[$ pre, post $]$
1	$[1]$,
2	$[2]$,
4	$[3]$,
5	$[4]$,
6	$[5,6]$
3	$[7,12]$
7	$[8,11]$
8	$[9,10]$

Example

vertex	$[$ pre, post $]$
1	$[1]$,
2	$[2]$,
4	$[3]$,
5	$[4,13]$
6	$[5,6]$
3	$[7,12]$
7	$[8,11]$
8	$[9,10]$

Example

vertex	$[$ pre, post $]$
1	$[1]$,
2	$[2]$,
4	$[3,14]$
5	$[4,13]$
6	$[5,6]$
3	$[7,12]$
7	$[8,11]$
8	$[9,10]$

Example

vertex	$[$ pre, post $]$
1	$[1]$,
2	$[2,15]$
4	$[3,14]$
5	$[4,13]$
6	$[5,6]$
3	$[7,12]$
7	$[8,11]$
8	$[9,10]$

Example

vertex	$[$ pre, post $]$
1	$[1,16]$
2	$[2,15]$
4	$[3,14]$
5	$[4,13]$
6	$[5,6]$
3	$[7,12]$
7	$[8,11]$
8	$[9,10]$

Example

vertex	$[$ pre, post $]$		
1	$[1,16]$		
2	$[2,15]$		
4	$[3,14]$	9	$[17,20]$
5	$[4,13]$	10	$[18,19]$
6	$[5,6]$		
3	$[7,12]$		
7	$[8,11]$		
8	$[9,10]$		

pre and post numbers

Node \boldsymbol{u} is active in time interval $[\operatorname{pre}(u), \operatorname{post}(u)]$

Proposition

For any two nodes \boldsymbol{u} and \boldsymbol{v}, the two intervals $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(\boldsymbol{u})]$ and [pre(v), post(v)] are disjoint or one is contained in the other.

pre and post numbers

Node \boldsymbol{u} is active in time interval $[\operatorname{pre}(u), \operatorname{post}(u)]$

Proposition

For any two nodes \boldsymbol{u} and \boldsymbol{v}, the two intervals $[\operatorname{pre}(\boldsymbol{u}), \operatorname{post}(\boldsymbol{u})]$ and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

pre and post numbers

Node \boldsymbol{u} is active in time interval $[\operatorname{pre}(u), \operatorname{post}(u)]$

Proposition

For any two nodes \boldsymbol{u} and \boldsymbol{v}, the two intervals $[\operatorname{pre}(\mathbf{u}), \operatorname{post}(\boldsymbol{u})]$ and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that $\operatorname{pre}(u)<\operatorname{pre}(v)$. Then \boldsymbol{v} visited after \boldsymbol{u}.

pre and post numbers

Node \boldsymbol{u} is active in time interval $[\operatorname{pre}(u), \operatorname{post}(u)]$

Proposition

For any two nodes \boldsymbol{u} and \boldsymbol{v}, the two intervals $[\operatorname{pre}(\mathbf{u}), \operatorname{post}(\mathbf{u})]$ and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u)<pre(v). Then \boldsymbol{v} visited after \boldsymbol{u}.
- If $\operatorname{DFS}(v)$ invoked before $\operatorname{DFS}(u)$ finished, $\operatorname{post}(v)<\operatorname{post}(u)$.

pre and post numbers

Node \boldsymbol{u} is active in time interval $[\operatorname{pre}(u), \operatorname{post}(u)]$

Proposition

For any two nodes u and v, the two intervals $[\operatorname{pre}(u), \operatorname{post}(u)]$ and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u)<pre(v). Then v visited after \boldsymbol{u}.
- If $\operatorname{DFS}(v)$ invoked before $\operatorname{DFS}(u)$ finished, $\operatorname{post}(v)<\operatorname{post}(u)$.
- If $\operatorname{DFS}(v)$ invoked after $\operatorname{DFS}(u)$ finished, $\operatorname{pre}(v)>\operatorname{post}(u)$.

pre and post numbers

Node \boldsymbol{u} is active in time interval $[\operatorname{pre}(u), \operatorname{post}(u)]$

Proposition

For any two nodes u and v, the two intervals $[\operatorname{pre}(u), \operatorname{post}(u)]$ and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u)<pre(v). Then v visited after \boldsymbol{u}.
- If DFS(v) invoked before $\operatorname{DFS}(u)$ finished, $\operatorname{post}(v)<\operatorname{post}(u)$.
- If $\operatorname{DFS}(v)$ invoked after $\operatorname{DFS}(u)$ finished, pre($v)>\operatorname{post}(u)$.
pre and post numbers useful in several applications of DFS

DFS in Directed Graphs

DFS(G)

Mark all nodes \boldsymbol{u} as unvisited
\boldsymbol{T} is set to \emptyset
time $=0$
while there is an unvisited node \boldsymbol{u} do DFS(u)
Output T

DFS(u)

Mark u as visited
pre(u) $=++$ time
for each edge (u,v) in Out(u) do if \boldsymbol{v} is not visited add edge $(\boldsymbol{u}, \boldsymbol{v})$ to \boldsymbol{T} DFS(v)
$\operatorname{post}(u)=++$ time

Example

Example

DFS Properties

Generalizing ideas from undirected graphs:
(1) $\operatorname{DFS}(G)$ takes $O(m+n)$ time.

DFS Properties

Generalizing ideas from undirected graphs:
(1) $\operatorname{DFS}(G)$ takes $O(m+n)$ time.
(2) Edges added form a branching: a forest of out-trees. Output of $D F S(G)$ depends on the order in which vertices are considered.

DFS Properties

Generalizing ideas from undirected graphs:
(1) $\operatorname{DFS}(G)$ takes $O(m+n)$ time.
(2) Edges added form a branching: a forest of out-trees. Output of $D F S(G)$ depends on the order in which vertices are considered.

- If u is the first vertex considered by $\operatorname{DFS}(G)$ then $\operatorname{DFS}(u)$ outputs a directed out-tree \boldsymbol{T} rooted at \boldsymbol{u} and a vertex \boldsymbol{v} is in T if and only if $v \in \operatorname{rch}(u)$

DFS Properties

Generalizing ideas from undirected graphs:
(1) $\operatorname{DFS}(G)$ takes $O(m+n)$ time.
(3) Edges added form a branching: a forest of out-trees. Output of $D F S(G)$ depends on the order in which vertices are considered.

- If u is the first vertex considered by $\operatorname{DFS}(G)$ then $\operatorname{DFS}(u)$ outputs a directed out-tree \boldsymbol{T} rooted at \boldsymbol{u} and a vertex \boldsymbol{v} is in T if and only if $v \in \operatorname{rch}(u)$
(1) For any two vertices x, y the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are either disjoint or one is contained in the other.

DFS Properties

Generalizing ideas from undirected graphs:
(1) $\operatorname{DFS}(G)$ takes $O(m+n)$ time.
(3) Edges added form a branching: a forest of out-trees. Output of $D F S(G)$ depends on the order in which vertices are considered.

- If u is the first vertex considered by $\operatorname{DFS}(G)$ then $\operatorname{DFS}(u)$ outputs a directed out-tree \boldsymbol{T} rooted at \boldsymbol{u} and a vertex \boldsymbol{v} is in T if and only if $v \in \operatorname{rch}(u)$
(1) For any two vertices x, y the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are either disjoint or one is contained in the other.
Note: Not obvious whether $\operatorname{DFS}(G)$ is useful in directed graphs but it is.

DFS Tree

Edges of \boldsymbol{G} can be classified with respect to the DFS tree \boldsymbol{T} as:
(1) Tree edges that belong to T
(2) A forward edge is a non-tree edges (x, y) such that $\operatorname{pre}(x)<\operatorname{pre}(y)<\operatorname{post}(y)<\operatorname{post}(x)$.
(0) A backward edge is a non-tree edge (y, x) such that $\operatorname{pre}(x)<\operatorname{pre}(y)<\operatorname{post}(y)<\operatorname{post}(x)$.
(1) A cross edge is a non-tree edges (x, y) such that the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are disjoint.

Types of Edges

Cycles in graphs

Question: Given an undirected graph how do we check whether it has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has a cycle and output one if it has one?

Using DFS...

to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort. Else output a cycle C.

Using DFS...

to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort. Else output a cycle C.

DFS based algorithm:
(1) Compute DFS(G)
(2) If there is a back edge $e=(v, u)$ then G is not a DAG. Output cyclce C formed by path from u to v in T plus edge (v, u).
(0) Otherwise output nodes in decreasing post-visit order. Note: no need to sort, $\operatorname{DFS}(G)$ can output nodes in this order.

Algorithm runs in $O(n+m)$ time.

Using DFS...

to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort. Else output a cycle C.

DFS based algorithm:
(1) Compute DFS(G)
(2) If there is a back edge $e=(v, u)$ then G is not a DAG. Output cyclce C formed by path from \boldsymbol{u} to \boldsymbol{v} in \boldsymbol{T} plus edge $(\boldsymbol{v}, \boldsymbol{u})$.
(0) Otherwise output nodes in decreasing post-visit order. Note: no need to sort, $\operatorname{DFS}(G)$ can output nodes in this order.

Algorithm runs in $O(n+m)$ time.
Correctness is not so obvious. See next two propositions.

Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in $\operatorname{DFS}(G)$.

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle $C=v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k} \rightarrow v_{1}$. Let v_{i} be first node in C visited in DFS.
All other nodes in C are descendants of v_{i} since they are reachable from v_{i}.
Therefore, $\left(v_{i-1}, v_{i}\right)$ (or $\left(v_{k}, v_{1}\right)$ if $\left.i=1\right)$ is a back edge.

Proof

Proposition

```
If G is a DAG and post(v) > post(u), then (u,v) is not in G.
```


Proof.

Assume post $(v)>\operatorname{post}(u)$ and (u, v) is an edge in G. We derive a contradiction. One of two cases holds from DFS property.

- Case 1: $[\operatorname{pre}(u), \operatorname{post}(u)]$ is contained in $[\operatorname{pre}(v), \operatorname{post}(v)]$. Implies that u is explored during $\operatorname{DFS}(v)$ and hence is a descendent of \boldsymbol{v}. Edge $(\boldsymbol{u}, \boldsymbol{v})$ implies a cycle in G but G is assumed to be DAG!
- Case 2: $[\operatorname{pre}(u), \operatorname{post}(u)]$ is disjoint from $[\operatorname{pre}(v), \operatorname{post}(v)]$. This cannot happen since \boldsymbol{v} would be explored from \boldsymbol{u}.

Example

Part IV

Linear time algorithm for finding all strong connected components of a directed graph

Finding all SCCs of a Directed Graph

Problem

Given a directed graph $G=(V, E)$, output all its strong connected components.

Finding all SCCs of a Directed Graph

Problem

Given a directed graph $G=(V, E)$, output all its strong connected components.

Straightforward algorithm:
Mark all vertices in \boldsymbol{V} as not visited. for each vertex $\boldsymbol{u} \in \boldsymbol{V}$ not visited yet do find $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})$ the strong component of \boldsymbol{u} :

Compute $\operatorname{rch}(G, u)$ using $\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{u})$
Compute $\operatorname{rch}\left(\boldsymbol{G}^{\mathbf{r e v}}, \boldsymbol{u}\right)$ using $\operatorname{DFS}\left(\boldsymbol{G}^{\mathrm{rev}}, \boldsymbol{u}\right)$ $\operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u}) \Leftarrow \operatorname{rch}(\boldsymbol{G}, \boldsymbol{u}) \cap \operatorname{rch}\left(\boldsymbol{G}^{\mathrm{rev}}, \boldsymbol{u}\right)$
$\forall \boldsymbol{u} \in \operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u})$: Mark \boldsymbol{u} as visited.
Running time: $O(n(n+m))$

Finding all SCCs of a Directed Graph

Problem

Given a directed graph $G=(V, E)$, output all its strong connected components.

Straightforward algorithm:

$$
\begin{aligned}
& \text { Mark all vertices in } \boldsymbol{V} \text { as not visited. } \\
& \text { for each vertex } \boldsymbol{u} \in \boldsymbol{V} \text { not visited yet do } \\
& \text { find } \operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u}) \text { the strong component of } \boldsymbol{u} \text { : } \\
& \quad \operatorname{Compute} \operatorname{rch}(\boldsymbol{G}, \boldsymbol{u}) \text { using } \boldsymbol{D F S}(\boldsymbol{G}, \boldsymbol{u}) \\
& \quad \operatorname{Compute} \operatorname{rch}\left(\boldsymbol{G}^{\text {rev }}, \boldsymbol{u}\right) \text { using } D F S\left(\boldsymbol{G}^{\mathbf{r e v}}, \boldsymbol{u}\right) \\
& \quad \operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u}) \Leftarrow \operatorname{rch}(\boldsymbol{G}, \boldsymbol{u}) \cap \operatorname{rch}\left(\boldsymbol{G}^{\mathbf{r e v}}, \boldsymbol{u}\right) \\
& \quad \forall \boldsymbol{u} \in \operatorname{SCC}(\boldsymbol{G}, \boldsymbol{u}): \text { Mark } \boldsymbol{u} \text { as visited. }
\end{aligned}
$$

Running time: $O(n(n+m))$
Is there an $O(n+m)$ time algorithm?

Structure of a Directed Graph

Graph G

Graph of SCCs $G^{S C C}$

Reminder

$\mathrm{G}^{S C C}$ is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph $G^{S C C}$ is a DAG.

Linear-time Algorithm for SCCs: Ideas

 Exploit structure of meta-graph...
Wishful Thinking Algorithm

(1) Let u be a vertex in a sink SCC of $G^{S C C}$
(2) Do $\operatorname{DFS}(u)$ to compute $\operatorname{SCC}(u)$
(3) Remove $\operatorname{SCC}(u)$ and repeat

Linear-time Algorithm for SCCs: Ideas

 Exploit structure of meta-graph...
Wishful Thinking Algorithm

(1) Let \boldsymbol{u} be a vertex in a sink SCC of $G^{S C C}$
(2) Do $\operatorname{DFS}(u)$ to compute $\operatorname{SCC}(u)$
(3) Remove $\operatorname{SCC}(\boldsymbol{u})$ and repeat

Justification
(1) DFS(\boldsymbol{u}) only visits vertices (and edges) in $\operatorname{SCC}(\boldsymbol{u})$

Linear-time Algorithm for SCCs: Ideas

 Exploit structure of meta-graph...
Wishful Thinking Algorithm

(1) Let u be a vertex in a sink SCC of $G^{S C C}$
(2) Do DFS(u) to compute $\operatorname{SCC}(u)$
(0) Remove $\operatorname{SCC}(u)$ and repeat

Justification
(1) DFS(\boldsymbol{u}) only visits vertices (and edges) in $\operatorname{SCC}(\boldsymbol{u})$
(2) ... since there are no edges coming out a sink!
-
(4)

Linear-time Algorithm for SCCs: Ideas

 Exploit structure of meta-graph...
Wishful Thinking Algorithm

(1) Let u be a vertex in a sink SCC of $G^{S C C}$
(2) Do DFS(u) to compute $\operatorname{SCC}(u)$
(0) Remove $\operatorname{SCC}(u)$ and repeat

Justification
(1) DFS(\boldsymbol{u}) only visits vertices (and edges) in $\operatorname{SCC}(\boldsymbol{u})$
(3) ... since there are no edges coming out a sink!

- $\operatorname{DFS}(u)$ takes time proportional to size of $\operatorname{SCC}(u)$
-

Linear-time Algorithm for SCCs: Ideas

 Exploit structure of meta-graph...
Wishful Thinking Algorithm

(1) Let u be a vertex in a sink SCC of $G^{S C C}$
(2) Do $\operatorname{DFS}(u)$ to compute $\operatorname{SCC}(u)$
(0) Remove $\operatorname{SCC}(u)$ and repeat

Justification

(1) DFS(\boldsymbol{u}) only visits vertices (and edges) in $\operatorname{SCC}(\boldsymbol{u})$
(3) ... since there are no edges coming out a sink!
(0) $\operatorname{DFS}(u)$ takes time proportional to size of $\operatorname{SCC}(u)$

- Therefore, total time $O(n+m)$!

Big Challenge(s)

How do we find a vertex in a sink SCC of $\mathrm{G}^{\mathrm{SCC}}$?

Big Challenge(s)

How do we find a vertex in a sink SCC of $\mathrm{G}^{\text {SCC }}$?
Can we obtain an implicit topological sort of $\mathrm{G}^{\text {SCC }}$ without computing $\mathrm{G}^{\mathrm{SCC}}$?

Big Challenge(s)

How do we find a vertex in a sink SCC of $\mathrm{G}^{\mathrm{SCC}}$?
Can we obtain an implicit topological sort of $\mathrm{G}^{\text {SCC }}$ without computing $\mathrm{G}^{\mathrm{SCC}}$?

Answer: $\operatorname{DFS}(G)$ gives some information!

Linear Time Algorithm

...for computing the strong connected components in G

do DFS $\left(G^{\text {rev }}\right)$ and output vertices in decreasing post order. Mark all nodes as unvisited
for each \boldsymbol{u} in the computed order do
if \boldsymbol{u} is not visited then
DFS(u)
Let S_{u} be the nodes reached by u
Output S_{u} as a strong connected component
Remove $\boldsymbol{S}_{\boldsymbol{u}}$ from G

Theorem

Algorithm runs in time $\mathbf{O}(\boldsymbol{m}+\boldsymbol{n})$ and correctly outputs all the SCCs of G.

Linear Time Algorithm: An Example - Initial steps

Graph G:

DFS of reverse graph:

Reverse graph $G^{\text {rev }}$:

Pre/Post DFS numbering of reverse graph:

$\xrightarrow{(13,16]} \mathrm{H}[14,15]$

Linear Time Algorithm: An Example

Removing connected components: 1

Original graph G with rev post numbers:

Do DFS from vertex G remove it.

SCC computed: \{G\}

Linear Time Algorithm: An Example

Removing connected components: 2

Do DFS from vertex G remove it.

SCC computed: \{G\}

Do DFS from vertex \boldsymbol{H}, remove it.

SCC computed:
$\{G\},\{H\}$

Linear Time Algorithm: An Example

Removing connected components: 3

Do DFS from vertex H, remove it.

Do DFS from vertex B
Remove visited vertices:
$\{F, B, E\}$.

SCC computed:
$\{G\},\{H\}$

SCC computed:
$\{G\},\{H\},\{F, B, E\}$

Linear Time Algorithm: An Example

Removing connected components: 4

Do DFS from vertex F
Remove visited vertices: $\{F, B, E\}$.

SCC computed: $\{G\},\{H\},\{F, B, E\}$

Do DFS from vertex \boldsymbol{A}
Remove visited vertices:
$\{A, C, D\}$.

SCC computed:
$\{G\},\{H\},\{F, B, E\},\{A, C, D\}$

Linear Time Algorithm: An Example

Final result

SCC computed: $\{G\},\{H\},\{F, B, E\},\{A, C, D\}$ Which is the correct answer!

Obtaining the meta-graph...

Once the strong connected components are computed.

Exercise:

Given all the strong connected components of a directed graph $G=(V, E)$ show that the meta-graph $\mathrm{G}^{S C C}$ can be obtained in $O(m+n)$ time.

Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

- Is the problem solvable when G is strongly connected?
- Is the problem solvable when G is a DAG?
- If the above two are feasible then is the problem solvable in a general directed graph G by considering the meta graph $G^{S C C}$?

Part V

An Application to make

Make/Makefile

(A) I know what make/makefile is.
(B) I do NOT know what make/makefile is.

make Utility [Feldman]

(1) Unix utility for automatically building large software applications
(2) A makefile specifies
(1) Object files to be created,
(2) Source/object files to be used in creation, and
(3) How to create them

An Example makefile

project: main.o utils.o command.o cc -o project main.o utils.o command.o
main.o: main.c defs.h
cc -c main.c
utils.o: utils.c defs.h command.h cc -c utils.c
command.o: command.c defs.h command.h cc -c command.c

makefile as a Digraph

Computational Problems for make

(1) Is the makefile reasonable?
(2) If it is reasonable, in what order should the object files be created?
(3) If it is not reasonable, provide helpful debugging information.
(4) If some file is modified, find the fewest compilations needed to make application consistent.

Algorithms for make

(1) Is the makefile reasonable? Is G a DAG?
(2) If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
(3) If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
(3) If some file is modified, find the fewest compilations needed to make application consistent.
(1) Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.

Take away Points

(1) Given a directed graph G, its SCCs and the associated acyclic meta-graph $\mathrm{G}^{\text {SCC }}$ give a structural decomposition of G that should be kept in mind.
(2) There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.
(3) DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).

